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ABSTRACT

The effects of moderate nonlinearity on the propagation

of sound are appreciable, and become dominant at very high

amplitudes. These effects and the phenomena of linear

acoustics are described by the second-order-nonlinear wave

equation, which is derived in this thesis and solved by

numerical means. The validity of the solution is demon-

strated by its agreement with various approximations in

their domains of applicability, and by its reproduction of

results derived from experiments. Using the numerical

solution in simulation of the operation of acoustic trans-

ducers at finite amplitudes, conclusions are presented

concerning the amount of energy that may be transmitted to

the far field by various types of signals.
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Blackstock, and Westervelt, which are cited in the text.

Subscripts are used to qualify the meanings of symbols

according to the following convention:

* : asterisk, used to denote a reference quantity;

o : denotes a nominal quantity, or one referred to

a mean-carrier frequency;

1 denotes the higher carrier of a bifrequency pair;

2 : denotes the lower carrier of a bifrequency pair;

- : denotes the difference frequency of a bifrequency

pair;

n : denotes the n-th component, e. g., of a spectrum.

For example, the variable u is a particle velocity,u*

a reference velocity, u a nominal or mean-carrier particle0

velocity, and so on. In certain instances a subscripted

symbol has a different meaning; such symbols are given

explicitly in the list of symbols which follows.

The superscript prime (') is used to denote an excess
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otherwise defined. For example, the excess acoustic

pressure is denoted p'=p-po"
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Chapter I

INTRODUCTION

Acoustical signals may easily exceed those levels for

which the linear lossy wave equation provides an adequate

model. Even if the amplitude is small, distortion products

will accumulate unless they are removed by absorption in

the medium. The wave equation may be taken to second order

to include the effects of moderate nonlinearity.

Numerous solutions exist for particular forms of the

second-order-nonlinear wave equation, for example, Burger's

equation (1948). Analytic solutions have been obtained only

for restricted cases, such as for iarticular regions of the

field or for plane-wave propagation.

The purpose of this thesis is to present an original

numerical solution of the second-order-nonlinear acoustic

wave equation, applicable to plane-wave propagation and to

propagation from an axisymmetric source of finite extent

having an arbitrary amplitude and phase profile. As the solu-

tion is a numerical procedure, no approximations are made in

the second-order-nonlinear acoustic wave equation as it is

solved. This represents an advance on the prior art, in

which solutions were obtained for simpler forms of the equa-

tion solved in this thesis. The numerical solution presented

in this thesis is valid within an unbounded medium which is

either lossless or has any desired attenuation character-
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istic as a function of frequency, and is either non-disper-

sive, or has any desired phase velocity as a function of

frequency. The useful conditions of a thermoviscous or a

monorelaxing medium are special cases which may be handled

with ease.

The first chapter of this thesis introduces the funda-

mental concepts of nonlinear systems and presents a review

of the prior art in solutions. A brief derivation of the

second-order-nonlinear wave equation is presented in

Chapter 2 and a numerical solution of this equation in Chap-

ter 3. The results of the solution under various conditions

are discussed in Chapter 4, and some of its implications are

presented in Chapter 5.

Nonlinear Systems and Equations

A nonlinear system is one for which the principle of

linear superposition fails. That is, if f(x) is the output

of the system in response to the input x, then

f(ax+by) # af(x)+bf(y) (1.1)

The functional relationship between two variables--

for example, the pressure on and condensation of an ele-

ment of fluid--may be expressed as a power series. Ifp' is

the excess acoustic pressure and s the condensation, then

the series in Beyer's notation (1960) truncated at the

second term may be written

iI
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P' = As+(B/2)s 2, (1.2)

which is called second-order as the first missing term

is proportional to the third power of s, a number much

less than unity. The dependence of pressure on the

specific entropy has been omitted from Equation (1.2), as

the latter is intended to apply for values of the Mach

number e less than 1/10. The Mach number is the ratio of

the peak particle velocity to the small-signal speed of

sound. Whitham (1974) has shown that the change in

entropy across a shock front is of the order of the Mach

number cubed, and is therefore negligible in a second-

order analysis.

The subject of this thesis is a numerical solution of

the second-order-nonlinear wave equation in several systems

of coordinates. A numerical solution is a procedure that,

given the values of the dependent variables at one set of

values of the independent variables, specifies how the

former may be computed at another set of the latter.

Numerical solutions generally involve a degree of error

due to approximation, which may be reduced as far as is

desired by appropriate numerical techniques.

Previous Solutions to Nonlinear

Wave Equations

This section reviews previous solutions to nonlinear

wave equations. Beginning with Euler's equations, Earnshaw
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(1860) obtained a result valid for inviscid progressive

plane-wave propagation and determined that the velocity of

propagation is a function of amplitude:

c = Co+BU, (1.3)

where $ is the parameter of nonlinearity of the fluid after

Beyer's notation, u is the particle velocity, and co is the

small signal speed of sound. Riemann (1860) independently

obtained a solution which includes plane waves traveling in

two opposite directions.

If a sinusoidal signal of small amplitude (compared

with the equilibrium pressure) is followed as it propagates

through an inviscid fluid, the compressions, whose particle

velocities are positive, will travel faster than the rare-

factions, whose particle velocities are negative. Thus

adjacent compressions and rarefactions will approach one

another, and a discontinuity in the pressure will be formed.

If a numerical procedure based directly on Equation (1.3) is

used, at the point at which a discontinuity is formed it will

fail, as the compressions and rarefactions continue to travel

past one another, and the predicted pressure will have

several distinct values at each point in the vicinity of the

discontinuity. This method is capable of giving good

results out to the critical range, as reported by Pestorius

and Blackstock (1973). Beyond the critical range the

authors average across the shock front, thus suppressing the

mult ivalued waveform.
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The Fubini (1935) and inviscid Fay (1931) solutions

for initially monofrequency waves give analytic solutions

for the near and the far fields of the lossless Burger's

equation. In the near field, i.e. for 0<1, Fubini's

expression for the n-th harmonic of the pressure is

2
Pn ( a )  = no in ( n G ) , (1.4)

and in the far field, for 0>3, Fay's result is

p (y)= 2 (1.5)
n n(l+o)

where c= ekz is the distance relative to the plane-wave

shock formation distance

r,= i/Stk. (1.6)

The Fubini-Fay solution for the near field and the

asymptotic far-field spectrum of a decaying shock wave were

combined by Blackstock (1966). His formulation uses a poly-

nomial in a to match the values and derivatives of the near-

and far-field solutions. This formula gives excellent

agreement with comparatively lossless plane-wave experimental

data throughout the field.

The limits of classical theory lie in its neglect of

dissipation. Fox and Wallace (1954) obtained a pertur-

bation solution for plane waves in a lossy medium. This

solution perturbs the rates of harmonic generation and decay

of the lossless plane-wave solution. Their paper discusses

the usefulness of scaled coordinates such as will be used in

I .•
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this thesis (though their notation is different), and also

considers the impossibility of generating acoustic signals of

arbitrarily large amplitude due to saturation of the medium.

Their paper also reports on comparison between numerical

simulation and experiments in air, water, and carbon tetra-

chloride. The agreement between simulation and experimental

results is excellent.

Cook (1962) described an iterative numerical procedure

for the calculation of the distortion of plane finite-

amplitude waves in a lossy medium. This procedure is

similar to that used in this thesis for nondispersive plane-

wave propagation, but is somewhat different in its details

and motivation. The model is based on two assumptions: that

the distortion mechanism may be described by a change in

phase velocity which is directly proportional to the

particle velocity, and that the absorption of each frequency

component is proportional to its amplitude times the square

of its frequency. The procedure is to distort the waveform

as it propagates over a small interval, and then to correct

for absorption.

Another nonlinear wave equation of great interest is

the Korteweg-DeVries equation; as given by Lamb (1965), it

may be written in the following scaled form:

a P P p -3p
a T (1.7)

This equation describes propagation in lossless and

dispersive nonlinear media. As Lamb's analysis (1965) of
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this equation indicates, the signal

P(T) = asech 2 (r/D), (1.8)

where

D = (12K/a)1/2 (1.9)

is a steady-state solution of the K-dV equation. This signal

is termed a solitary wave solution, or soliton. It will pro-

pagate through the medium at a velocity dependent on its

amplitude a. As Zabusky (1967) has shown by means of a

numerical analysis of Equation (1.7), several solitons may

interact without losing their identities. Any signal pro-

pagating in a nonlinear dispersive medium will be resolved

into one or more solitons. Under certain conditions these

may coalesce at a later time to re-form the initial signal.

Rosen (1966) discussed the computational solution of

nonlinear parabolic differential equations by linear

programming. This method involves choosing a set of

functions of which a linear combination approximates the

desired solution. Two sets of conditions need to be

satisfied: the boundary conditions and the partial

differential equation. One may choose the functions so

that each satisfies the boundary conditions and a linear

combination satisfies the differential equation, or choose

them so that each satisfies the differential equation and

a linear combination satisfies the boundary conditions.

In either case, it is a linear programming problem to
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determine the coefficients of the linear combination which

minimize the error in some sense. Of particular interest

to the subject of this thesis is that the method is

directly applicable to the plane-wave form of Burger's

equation. Rosen gives several examples of the error

bound which may be expected, showing that with as few as

five well-chosen functions an error of less than 1/10

percent may be obtained.

The work discussed above dealt with the propagation

of finite-amplitude plane waves only. It is possible to

use a stretched coordinate system for Burger's equation

which will accommodate plane, cylindrical, or spherical

spreading. This approach is used by Fenlon (1971) in

a method for computing the interaction between spectral

components in progressive finite-amplitude waves. In this

method, the spectral representation is truncated at a finite

number of terms, and a coupled set of nonlinear differential

equations is obtained for the component amplitudes. Given

an initial spectrum at ao , the spectrum at a=Aa may be

obtained; then, at c=2Aa, and so on until the desired range

is reached.

Cary used the transformation of Naugol'nykh (1963) to

obtain an equation from which an expression for the "extra

decibel loss" due to finite amplitude absorption was

obtained (1967). This paper reaches the conclusion that

finite-amplitude losses in spherical waves are less than for

* -_
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plane waves of the same source level, but still are not

negligible.

A second paper by Gary (1968) that is of interest

in the history of numerical solutions to nonlinear wave

equations presents a numerical solution based on Burger's

equation in a stretched coordinate system, suitable for

plane, cylindrical, and spherical spreading. Following

the method of Banta (1965), the normalized particle

velocity is represented as a Taylor's series, and enough

terms are kept to ensure an adequate model of the distortion

process. This method is valid until the effects of absorp-

tion have become dominant over nonlinear effects. Reason-

ably good agreement between experimental data published by

Romanenko (1959) and the numerical predictions is shown.

Gary notes that this method should be useful in the design

of nonlinear acoustic systems.

The pressure field radiated by an acoustic source may

be conceptually divided into three zones. Zone I is the

region close to the projector in which energy is transferred

into harmonic or modulation frequencies by nonlinearity

faster than it is removed by viscous losses or reduced by

spreading losses. Conversely, zone III is the region far

from the projector in which either viscous losses or

spreading losses are dominant over the effects of

nonlinearity Between zones I and IIl, a shock wave mayI form and, if so, the rates of harmonic generation and loss

will be comparable within some region, giving rise to a
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quasi-stable waveform. This region, if it exists, is

called zone II. Cary (1973) has published an exact zone II

solution of Burger's equation for a parametric source.

Sadchev and Seebass (1973) published a study of the

decay of spherical and cylindrical shock waves. This

article presents a numerical finite-difference solution to

a general form of Burger's equation including the effects

of viscous absorption in either plane, cylindrical, or

spherical geometry. The plane wave form may be transformed

into a linear equation by the methods of Hopf (1950) and

Cole (1951). The latter equation has been solved by

Lighthill (1956), and Sadchev and Seebass use Lightill's

analytic results as a test for their numerical method.

The numerical method of Sadchev and Seebass employs a

mesh of sample points in two coordinates, which may be

considered as along and normal to the direction of

propagation. Cylindrical and spherical spreading each have

th ! effect of transferring energy outward from the beam

axis. For this reason it is necessary to increase the

number of mesh points in the normal direction and the size

of the normal mesh-point spacing from time to time, so as to

represent the whole of the pulse as it propagates and

spreads.

The concept of the parametric array was introduced

by Westervelt (19b3) and led to considerably increased

interest in finite-amplitude acoustics. A parametric

array is an end-fire array formed in a nonlinear medium
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by the interaction of relatively high-frequency carrier

beams of different frequencies, which generate a

difference-frequency signal. As the amplitude of the

carriers is reduced by absorption and spreading, the para-

metric array has a built-in amplitude taper. The principal

advantages of a parametric array are the relatively narrow

beamwidth of the difference-frequency signal, which is com-

parable with that of the carriers, the virtual absence of

side lobes in the difference-frequency beam in many cases,

and wide relative bandwidth. The principal disavantage is

its low conversion efficiency.

An asymptotic far-field value for the difference

frequency level arising from a bifrequency signal has been

derived by Fenlon (1972). Let the acoustic Reynold's number

be defined by

I' = Ek/ X, (1.10)

where 6 is the Mach number, B is the parameter of

nonlinearity, k is the wave number of the reference

frequency, in this case the difference frequency, and

=-6f2 is the attenuation coefficient of the difference

frequency. The downshift ratio Yo is the ratio of the

mean carrier frequency to the difference frequency. A

scaled acoustic Reynold's number may be defined as

192 = F/2Y (1.1)

provided that f f , i. e., that Y is large, and that
1 2
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the carrier amplitudes are equal; then, the function

p (O) I I (F1 ,2 /2) -o/F (1.12)

71,2 = 1(F1,2/2) e

0 0

expresses the difference-frequency level as a function of

a for >>I. Here f, is the higher of the two carriers

and f2 is the lower, with a the scaled range as defined

previously, Equation (1.12) may be multiplied through by

exp(a/r) so as to cancel the effect of viscous absorption,

and written in the form

2
a/F 1 1 (PFI,2/2) 1 (Fl,2/4)

P-(a/)e 2(F 2 /2) +(FI, 2 /4) (1.13)
0 0

where the iatter approximation, involving the leading terms

of the Bessel functions, is accurate to within a few

percent. The right side of this equation is a maximum for

F 1 ,2 /4. Since

Fi, 2= I/2yo, (1.14)
0

for any downshift ratio, there is a value of F that will

maximize the efficiency of the parametric conversion.

The value of F for which maximum efficiency is attained is

r = 8Y . (1.15)max 0

In Fenlon and Mckendree's (1979) solution for the

propagation of a bifrequency signal at weak finite

amplitudes, the beam shapes of the carrier waves are
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approximated by Gaussian functions, and it is assumed that

each carrier propagates linearly. Unlike any of the previous

methods, this technique includes the effects of diffraction

(spreading losses) via a three-dimensional form of Burger's

equation due to Zablotskaya and Kokhlov (1969) and to

Kuznetsov (1971). This method allows the difference-

frequency level arising from interaction of the carriers to

be determined. This solution applies for axisymmetric waves

propagating in a viscous fluid and can be evaluated for a

wide range of parameters. However, it fails at large source

levels due to its neglect of finite-amplitude losses in the

carriers, and the amount of the error cannot be determined

as a function of the source level. The weak-finite-ampli-

tude solution is compared with the results of the numerical

method in Chapter 4.

Bakhvalov, Zhileikin, Zablotskaya, and Kokhlov (1978,

1979) have published papers to date on finite amplitude

wave propagation. They employ a direct numerical solution

of the second-order nonlinear wave equation, but their

method is not explained. The results of the operational

solution are compared with the results obtained by

these researchers in Chapter 4.
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Experiments at Finite Amplitudes

A number of experiments have been conducted using

sources driven at finite amplitudes. Shooter, Muir, and

Blackstock (1974) used a 454 kHz (kiloHertz) source in fresh

water. Muir and Willette (1972) performed experiments with

bifrequency signals having carriers in the vicinity of

450 kHz, and Eller (1974) used carriers near 1435 kHz.

Each of these experiments has been simulated by the

numerical solution, and the agreement between numerical

and experimental results is discussed in Chapter 4.
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Chapter 2

DERIVATION

This chapter presents a brief derivation of the second-

order-nonlinear wave equation in the form in which it will

be used subsequently in this thesis. The second section

reduces the equation to Burger's form and shows the simpli-

city of the resulting equation in scaled coordinates. The

last section of this chapter introduces attenuation and

dispersion into Burger's equation.

The Second-Order-Nonlinear
Wave Equation

The inviscid form of the nonlinear wave equation

correct to second order as given by Goldstein (1960) is

(V
2  1 92

V =

oo Co a (2.1)

where P is the velocity potential. The first term within

the brackets on the right side of Equation (2.1) represents

the nonlinearity introduced by convection of momentum

through the element of fluid. The second term represents

the nonlinearity of the equation of state to second order.

The form shown is for an ideal gas; in a fluid, the coeffi-

'
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B
cient y-l may be replaced by 1+ , a measured parameter,

as indicated by Beyer (1960).

In the right side of Equation (2.1) the definition of

the potential function in the absence of rotation of the

fluid may be applied. Also, the linearized wave equation

V2 9 
2

o (2.2)

0

may be substituted, since the inclusion of second-order

terms in this substitution would lead to terms of the third

order, which are explicitly ignored in this thesis. These

substitutions give for the second nonlinear term

Y-1 i V2 = a 2 ¢ = i a 
2

C C 0 = 2C a (2.3)

By using the plane-wave impedance relationship

u = p'/p c (2.4)

and applying the definition of the velocity potential

P' = -P0  '(2.5)

the first nonlinear term on the right-hand side of Equation

(2.1) becomes

a (V2 (2.6)___ 1p2 C 2 ),
aT (V1*Vp) = 0 (0P 00

so that the inviscid second-order-nonlinear wave equation

may be written in terms of the excess acoustic pressure p'

• .'
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in the form

2

(2 1 o T- -- 4 - . (2.7)

C0 DZ0 0

Scaled Coordinates and Burger's Equation

In nonlinear equations, a system of scaled coordinates

is used that emerges naturally from normalization of

Equation (2.7). A transformation due to Kokhlov (1961) is

applied to Equation (2.7), involving the dummy range

variable and substitution of the retarded time T':

E=z, T'= T-z/Co, (2.8a,b)

where is the direction of propagation. If the definition

V 2
= V2 + _2 (2.9)

is used, then the Zablotskaya-Kokhlov equation results:

C 2
C p, (2.10)

Z - V 1 P 2poc 0

whose plane-wave form is Burger's equation:

a 1 = B , 2 (2.11)

3)z 2p C0

To obtain this result, it is assumed that the rate of

change of the waveform with respect to distance is very

much less than its rate of change with respect to time.

- - C -. ,~ 'I. . . . -- V -- - - - -.
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In finite-amplitude propagation in fluids, this assumption

is justified as the cumulative effects of nonlinearity

occur over many wavelengths of the signal.

Now the retarded time, range, and pressure are

normalized with respect to the subscript-star references:

tt = W~ w(t-z/c) W wt-k Z, (2.12a)

a : fc~k*z (2.12b)

and

P= P'/P* (2.12c)

where W,, k, , and p, are the frequency, wavenumber,

Mach number, and peak pressure of an arbitrary reference

wave. Substitution of the above into Burger's equation

leads to the equation in scaled coordinates:

__P = 1 ap 2  (2.13)
au 2 3'r

Attenuation and Dispersion

The presence of viscous forces and of dispersivity in

the medium introduces additional terms into the forces

acting on each element of fluid. These effects are linear

and thus do not affect the nonlinear term as represented

in Burger's equation.

Attenuation of sound in a fluid is produced by viscous

losses and by thermal relaxation. The thermoviscous
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attenuation parameter of a fluid, y, is defined by Landau

and Lifshitz (1959) as

2n+ ' + K(y-I)/C(= - 2  2Qc (2.14)2p0c 0 2p 0c o000 0

in which q and q'are the shear and dilatational coefficients

of viscosity, p and P are the equilibrium pressure and

density, K is the thermal conductivity, Y is the ratio of

specific heats, and Cp is the specific heat at constant

pressure. The first part of Equation (2.14) represents

viscous absorption, and the second represents thermal

relaxation. In all fluids except liquid metals, the thermal

relaxation term is several orders of magnitude smaller than

the viscous absorption term.

The thermoviscous attenuation coefficient of a fluid at

the frequency f is defined:

a= 6f 2  (2. 15)

and in progressive plane-wave propagation, the effect of

absorption is an exponential decrease in amplitude as a

function of the distance traveled:

p(z) = p(o)e Z (2.1)

which applies for the value of a corresponding to each

frequency component.

In fluids which contain or are made up of polyatomic

molecules, different molecular configurations may have

different internal energies. It is possible for acoustic
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energy to be stored in a rearrangement of the molecular

structure and subsequently restored to the acoustic signal.

Each internal relaxation process is characterized by its

relaxation time TR . A monorelaxing fluid exhibits the

property of dispersion--that is, a linear dependence of the

velocity of propagation on frequency--at frequencies far

removed from its relaxation frequency. The dispersivity

of a fluid is defined

m = (c 2 - c2 )/C 2  (2.17)

The complete derivation of the second-order-nonlinear

wave equation including thermoviscous absorption and

relaxation terms is outside the scope of this thesis.

The interested reader is referred to the derivation by

Lamb (1959) for the dispersion term and the wave

equation derivation by Kuznetsov (1971).

For a monorelaxing fluid having relaxation time TR and

attenuation parameter a, the acoustic Reynold's number may

be written:

r = Fk,/a, (2.18)

and the scaled relaxation and dispersion coefficients A

and d may be written

= 2C*/M (2.19)
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and

d 2f ,E*/m(w TR )2, (2.20)

each evaluated at the scaling frequency w * and Mach number

E, • In scaled coordinates, the second-order-nonlinear wave

equation including the effects of relaxation, thermoviscous

losses, and diffraction takes the form of an equation first

derived in slightly different form by Kokhlov (1961). In a

non-relaxing fluid, this equation reduces to Kuznetsov's

equation (1971) and, in a non-relaxing and lossless fluid,

it reduces to the Zablotskaya-Kokhlov equation (1969). The

second-order-nonlinear wave equation in scaled coordinates

including relaxation, spreading, and losses, takes the form

(lwP - I a, ~P I 'P 2  1 1p(I+* R D-) L r TT 2 T - 0

W*TR 3 2 p

- A aT (2.21)

where the transverse Laplacian operator is primed to

indicate that it is in scaled coordinates. If W *T <<I,
R

then Equation (2.21) takes a simpler form including

dispersion rather than relaxation:

aP 1 a 3p a 2 p I ( V2 P - i 2

o - d -[3  r T r  O 2 aT (2.22)

0

In Equation (2.22), the nonlinearity is represented in

the same form as Burger's equation. The second term

represents dispersion, the third represents thermoviscous

absorption, and the fourth represents diffraction. The



22

plane-wave form of Equation (2.22) 
is

3P 1 3  I2p 1 3p 2

d 3r T T 2 3T ' (2.23)

which is the limit as a tends to infinity, suppressing0

the diffraction term. In a lossless fluid, the acoustic

Reynold's number tends to infinity, removing the absorption

term. In a non-relaxing fluid m is zero, so d becomes

infinite and removes the dispersion term.

Equations (2.21), (2.22), and (2.23) were derived using

the progressive-wave transformation due to Kokhlov, as was

used in the scaling of Equations (2.10) and (2.11); thus,

the same restrictions apply. In addition, a paraxial

assumption requires that the effects of attenuation and

dispersion are significant only along the direction of

propagation; the transverse components of attenuation

and dispersion are ignored.
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Chapter 3

NUMERICAL SOLUTION

This chapter presents each feature of the numerical

solution separately. The second-order-nonlinear wave

equation, Equation (2.22), is solved in parts: first the

lossless Burger's equation; then that part representing loss

and dispersion; and last, the diffraction term. It is

assumed that each of these effects operates independently of

the others over small distances, so that it is possible to

consider them one at a time. That is, a sampled wavform is

propagated over an incremental range according to the

lossless Burger's equation. It is then Fourier transformed,

and each frequency component is subjected to that attenu-

ation and dispersion which it would have suffered in propa-

gating over the same distance in a linear manner. For

axisymmetric three-dimensional propagation, the procedure

outlined above is applied to each of a set of sampled wave-

forms at various radial distances; then the resulting

signal is subjected to linear diffraction over the

incremental distance.

The first section of this chapter discusses the

numerical solution of the lossless Burger's equation. The

next section presents the method by which attenuation and

dispersion are introduced in the frequency domain, and
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the third section explains the numerical diffraction

method. The last section of this chapter discusses

features of the computer programs which implement the

numerical solution, and reviews the reasons for certain

choices made in the methods of implementation.

Lossless Plane-Wave Solution

The lossless plane-wave solution is obtained by direct

application of a method due to Bellman et al. (1965). In

this method the points on the waveform advance at a velocity

that is proportional to their amplitudes. Beginning with

the lossless Burger's equation,

3P =0 , (3.1)

the derivative with respect to a may be approximated as

3P -rlp(J,[) - p (O,T)I  (3.2)

where a is used in the sense of an incremental range.

Equations (3.1) and (3.2) become, by rearranging terms,

P(C,T) = P(O,T) + GP(G,T) 3 - (3.3)

If the quantity UP(G,T) is small, then it is reasonable to

relate Equation (3.3) to a Taylor's series expansion. If P

is slowly varying then, correct to second-order terms,

P(G,T) = P[0,T+UP(O,T) (3.4)

4 '9,*
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This formulation is not subject to failure by prediction

of multivalued pressures, as each point of the waveform at

the advanced range is related to a definite point at the

initial range. Other formulations involving explicit

numerical differentiation in a form reminiscent of

Equation (3.3) have been found to become unstable in the

vicinity of a discontinuity.

The numerical implementation may be enhanced by inclu-

ding an estimate of P(a,T)in the expression for the incre-

mental time. Using Equation (3.4), an estimate of P(O,T)

denoted P (G,T), may be defined ase

Pe(GT) = P OT+CP(O,T)] (3.5)

and this estimate may be substituted into Equation (3.4)

to give

P(I,T) = POT+GPe(0,T)] (3.6)

Equations (3.4) and (3.6) are implemented in the fol-

lowing manner. A number of samples of the pressure waveform

are taken at equal intervals covering the data window.

These samples represent P(O,T). A second array of samples

is prepared, each of whose values is interpolated from among

the P(O,T)at the time spe_ ified by Equation (3.4). These

are the values of the waveform at the range o. The values

of the waveform at the new range may be used as the origin

for a new range step, and the procedure may be repeated



26

until the desired range is reached. Both equations are

based on a Taylor's series and are valid for o less than 1.

For implementation of Equation (3.6), the first estimate

is used to obtain a new estimate of the advanced waveform

at each range step.

Attenuation and Dispersion in the
Frequency Domain

If the normalized pressure waveform P is Fourier

transformed, its spectrum will consist of the coefficients

p at frequencies which are related by integers.

Equation (2.22) expressed in the frequency domain takes

the form

p 3 2
3w W

-f-) = - P *PW" (3.7)
3, + _ + 2 2W

Without loss of generality, it may be assumed that w is

an integer multiple of w , the frequency at which the

scaling of Equations (2.21) et seq. was performed. Then,

the equation in the frequency domain becomes

3 2

)(-P + - -P *P (3.8)
d "n 2 n*n

with P the n-th Fourier harmonic component.

For a mono-relaxing fluid having relaxation time IR

additional terms in the scaled frequencyn W, are introduced

by the derivatives in Equation (2.21). The frequency-dowain

equation then takes the form
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n + RF/A + )p
- -+(nwTR)j+ d .l+(nw*TR)

= )n P *P n (3.9)
2 n

Since the method of the first section provides a satis-

factory solution of the lossless equation, it may be used to

propagate the waveform to an incrementally advanced range.

The waveform is then Fourier transformed, and each of its

spectral components is processed according to the linear

equation for attenuation and dispersion:
aPn ,r.n3 2a3, ( - +- )p = 0,

for which the formal solution is

_ ( n 3  n 2

P (a,T) = P (O,r)e d ' F (3.11)
n n

Note that the coefficient of P in Equation (3.10) is
n

transferred intact into the exponential in the solution.

Thus, the effects of an arbitrary attenuation and dispersion

as a function of frequency may be introduced by multiplying

the spectrum by a complex function of frequency whose

form may be determined from the governing wave equation

by inspection.

Diffraction by Diffusion in Frequency

The nonlinear wave equations, Equation (2.21) et seq.,

contain diffraction terms. If the other terms are taken
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into account by the methods of the preceding sections, then

the remaining equation takes the form of a diffusion

equation in the frequency domain:

Pn + 2 ,p =
a no 1 VKn =0. (3. 12)

The effects of diffraction on the propagation of finite

amplitude waves in three dimensions is introduced by a

finite-difference numerical solution of Equation (3.12);

this method is termed "diffusion in frequency".

The incremental range 0 may be chosen small enough to

render negligible all terms higher than the first order.

Under these conditions, Equation (3.12) may be converted to

n P () V 2

n n ( ° )  no 0 Pn(o) (3.13)

which is easily solved by finite-difference methods.

A finite-difference numerical technique must be used as the

functional form of Pn is not known.

Comments on the Numerical Solution

The method of numerical solution of the second-order-

nonlinear wave equation described in this chapter is imple-

mented by a group of computer programs written in ANSI

standard FORTRAN IV and operating on an IBM 370/3033

running under OS/MVT. On this system, data sample arrays of

almost unlimited size may be accommodated. The data arrays

in the program are restricted to 256 by 40 points so that
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the program will fit into a smaller computer, also used

during this research. The processing time for simulations

which exercise the program most severely is on the order of

300 to 1000 seconds. Plane wave propagation may be modeled

with up to 2048 waveform samples. Such simulations require

comparable lengths of time for execution.

The evaluation of Equation (3.4) or (3.6) requires

interpolation between samples of the waveform. Several

methods have been tried, including spline fitting, second-

through fifth-order fitted polynomials, and third- through

seventh-order Lagrange interpolation. Each of these

advanced methods fails in the vicinity of the discontinuity.

Accordingly, a linear fit interpolator is used. The advanced

time for each new waveform sample falls between two samples

of the old waveform, and the interpolated value is assumed

to lie on the straight line joining the old samples. This

procedure has been found to be sufficiently accurate by

comparison with known analytic solutions in their domains

of applicability. The method is biased, however, in the

following manner. A sinusoidal signal is everywhere con-

cave with respect to the ordinate axis. A linear inter-

polator will therefore tend to underestimate its values,

as the sinusoid lies further from the ordinate axis between

nearby samples, than does the straight line joining them.

This property of the linear interpolator introduces an

error or bias into the numerical results. Other waveforms

of practical interest have segments which are convex with
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respect to the ordinate axis and are there overestimated.

The amount of the error may be reduced by taking more wave-

form samples. The accuracy of the interpolation is also

affected by the number of steps per unit range. If the

step size is small, the advanced times at which the inter-

polated waveform values are desired will be close to the

times of the existing waveform samples, and the error of the

linear interpolation will be less than if the advanced times

lay further from the existing samples.

It is instructive to consider the sample number con-

straints in the frequency domain. A sequence of N samples

spanning a time T can be Fourier transformed into the ampli-

tudes of frequency components which are the harmonics

of l/T. It has been found that acceptable results are

obtained in the numerical solution if at least ten harmonics

of the highest significant frequency component at the source

can be accommodated in the spectrum. A sequence of length N

yields a spectrum which coversNf2+l harmonics of lIT.

Thus N/2+1 must be chosen greater than or equal to ten

times the relative frequency of the highest frequency source

component. For a pure tone input, the highest significant

source frequency is the input tone. For a bifrequency

signal, the sum frequency must have about ten harmonics to

ensure reasonably good results from the nonlinear

operator.

Certain kinds of signals, for example, trains of soli-

tons, will propagate in an appropriate medium without loss
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of energy. For this reason, the numerical solution as

implemented in the computer programs includes an optional

feature which ensures conservation of energy in the non-

linear operator. This option must be used with discretion,

as many kinds of signals are subject to finite-amplitude

losses.

For R>>l, that is, at ranges much greater than the

Rayleigh distance, spherical spreading may be assumed. The

diffraction by diffusion-in-frequency operator, as imple-

mented in its subroutine, allows the user to select a value

of R beyond which spherical spreading is assumed. Since the

Rayleigh distance differs for each harmonic, the values of y

at which spherical spreading may be imposed differ in a

correjponding way, in direct proportion to their Fourier

harmonic numbers.

The effects of diffraction may be taken into account

by any of several different techniques. It is possible to

represent the beam function at each frequency as a sum of

eigenmodes of the geometry in use; then, the diffraction may

be interpreted as a phase modulation of the

spatial-frequency spectrum. Attempts to implement this

method by numerical means were usable but subject to

breakdown in the far field. The finite number of samples

in the radial direction implies a spatial periodicity oi

the source function, and interference between the image

sources becomes evident in the far field.

a- - -



32

Chapter 4

RESULTS

This chapter presents results of the application of the

numerical solution to a number of problems. The first

section gives examples of the independent operation of

certain parts of the numerical solution to demonstrate its

degree of stability and accuracy. The second section deals

with finite amplitude propagation of plane waves, and

discusses the coupled effects of nonlinearity, attenuation,

and dispersion as they are introduced in various relative

strengths. The third section shows the results of the

weak finite amplitude solution and those of the numerical

solution for equivalent conditions, including diffraction

and spreading. The fourth section presents the results of

certain experiments at finite amplitudes and their

numerical simulations. The last section presents numerical

simulations of various types of modulated signals in

axisymmetric propagation in one and in three dimensions at

finite amplitudes.

Numerical Solution of the Lossless Burger's

Equation and of Linear Diffraction

The number of waveform samples and the number of steps

per unit of range may be chosen at the discretion of the
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user of the numerical solution. Table 4.1 presents the

amplitudes of the first three harmonics of a pure-tone

signal at two ranges as a function of the number of

waveform samples, with 10 steps per unit range. Table 4.2

presents the amplitudes of the first three harmonics of a

pure-tone signal at two ranges as a function of the number

of steps per unit range for 64 waveform sample points.

For each table, the analytic value according to the Fay

solution and the error as a percentage of this value

is shown. These results were derived from the use of

Equation (3.4) after the method due to Bellman (1965).

If the revised expression given by Equation (3.6) is

used, then better results may be obtained with a smaller

number of calculations. Table 4.3 shows the amplitudes of

the first three harmonics of a pure-tone signal at various

ranges, as deduced from the matched-asymptotic solution due

to Blackstock (1966) and from the numerical implementation

of Equation (3.6). In this case 128 waveform samples were

used, with 10 steps per unit 0 to 0=1 and 5 steps per unit

C beyond G=1. Errors are shown between the best numerical

results and the matched-asymptotic solution values as a

percentage of the latter.

Figure 1 shows the level on axis of a Gaussian beami,

exp (- ) at R0O, and Figure 2 shows the beam widths to

the -3, -6, and -10 dB points, as measured in the numer-

ical solution as a function of range. The discrete points

are derived from the implementation of the diffusion-in-fre-
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Table 4.1. Harmonic Levels at Two Ranges for an Initially
Pure-Tone Signal Propagating in a Lossless
Nonlinear Medium, For Various *Numbers of
Waveform Samples and 10 Steps Per Unit Range,
Derived from the Numerical Solution of
Equation (3.4).

NUMBER OF
WAVEFORM4 B (5) B (5) B (5) B (10) B (10) B (10)
SAMPLES 1 2 3 1 2 3

8 .288 .108 .040 .158 .058 .02U
16 .310 .142 .083 .170 .076 .042
32 .317 .153 .096 .174 .082 .050
64 .320 .157 .102 .175 .084 .053

128 .321 .158 .104 .176 .086 .055
256 .321 .159 .104 .176 .08b .056
512 .321 .159 .104 .176 .086 .056

1024 .321 .159 .104 .176 .08b .056

analytic .333 .107 .111 .182 .091 .061

error, % -3.6 -4.8 -6.3 -3.3 -5.5 -8.2

Table 4.2. Harmonic Levels at Two Ranges for an Initially
Pure-Tone Signal Propagating in a Lossless
Nonlinear Medium, For Various Number of Steps
Per Unit Range and 64 Waveform Samples,
Derived from the Numerical Solution of
Equation (3.4).

NUMBER OF
RANGE B (5) B (5) B (5) B (10) B (10) B (10)
STEPS 1 2 3 1 2 3

5 .311 .153 .099 .172 .083 .052
10 .320 .157 .102 .175 .084 .053
20 .324 .159 .103 .177 .086 .054
40 .326 .160 .103 .178 .086 .054

analytic .333 .167 .111 .182 .091 .061

error, %. -2.1 -4.2 -6.3 -2.2 -5.5 -11.5
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Table 4.3. Levels of the First Three Harmonics of a Pure
Tone Signal in Lossless Nonlinear Plane-Wave
Propagation as Derived from the Matched-Asymp-
totic Solution due to Blackstock (1966) and
from the Numerical Solution of Equation (3.6),
with Errors Expressed as a Percentage of the
Former.

MATCHED- NUMERICAL ERROR,
SIGMA ASYMPTOTIC EQUATION (3.6) PERCENT

B (a ) B (a )
1 1

0.-1 0.9988 0.9986 -0.02
0.2 0.9950 0.9948 -0.02
0.5 0.9691 0.9685 -0.06
1.0 0.8801 0.8820 0.22
2.0 0.6484 0.6518 0.52
5.0 0.3333 0.3349 0.48

10.0 0.1818 0.1816 -0.11

B (a) B (a)
2 2

0.1 0.0498 0.0496 -0.40
0.2 0.0987 0.0981 -0.61
0.5 0.2298 0.2284 -0.61
1.0 0.3528 0.3482 -1.3
2.0 0.3134 0.3113 -0.67
5.0 0.1667 0.1679 0.72

10.0 0.0909 0.0932 2.5

B (a) B (a)
3 3

0.1 0.0U37 0.0037 0.0
0.2 0.0147 0.0144 2.0
0.5 0.0802 0.0803 0.12
1.0 0.2060 0.2023 -1.8
2.0 0.2070 0.2047 -1.1
5.0 0.1111 0.1117 0.54

10.0 0.0606 0.0584 -3.6
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Scaled Range Relative to the Rayleigh Distance, R
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Figure 1. Level On Axis of a Gaussian Beam as a
Function of Range, Under the Influence
of Linear Diffraction.
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Figure 2. Beam Widths to the 3, 6, and 10 dB Down
Points as a Function of Range, for a
Gaussian Beam Under the Influence of
Linear Diffraction.
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quency technique which is used in the numerical solution.

The known analytic values for the diffraction of a Gaussian

beam are shwon in these figures as solid curves. The accu-

racy with which the numerical solution matches the analytic

values indicates that the numerical solution of the dif-

fraction term by diffusion-in-frequency is satisfactory.

The remaining difficulty with the diffusion-in-frequency

technique will be discussed in Chapter 5.

Finite-Amplitude Propagation
of Plane Waves

The finite-amplitude propagation of plane waves

in a thermoviscous mono-relaxing fluid is governed by three

effects: nonlinearity, attenuation, and dispersion. This

section demonstrates the operation of the numerical solution

of Equation (2.22) in each of these effects, taken sepa-

rately and in combination.

The nonlinear operator may be tested by comparison with

Blackstock's matched asymptotic solution to the lossless

Burger's equation. Figure 3 shows the harmonic amplitudes

which are predicted by Blackstock's formula; Figure 4 shows

the same function as predicted by the plane-wave lossless

numerical solution. The difference between the matched-

asymptotic and the numerical solution is nowhere greater

than a few percent; this indicates the accuracy of the

numerical solution in lossless plane-wave propagation.
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from the Matched Asymptotic Expression
Derived by Blackstock.
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Viscous losses introduce an exponential decay of signal

level with range. WithPn the n-th harmonic amplitude,

a the range, and F the attenuation parameter,

-n 2 (/P (4.1)

P (a) = P (O)e
n n

is an obvious consequence of Equation (3.10) with respect

to viscous losses.

Figure 5 shows the waveform of a monofrequency signal

ata =1, 2, and 3, as it propagates in a lossless medium.

The waveform steepens until a shock is formed, and the shock

wave decays due to finite amplitude loss without changing

its shape. In Figure 6, attenuation has been introduced

with an acoustic Reynold's number of 10. The amplitude of

the wave is reduced by finite-amplitude losses, and in

addition each harmonic is attenuated by thermoviscous

effects. Figure 7 shows the waveforms with very high

attenuation, corresponding tor =3. At05=3, the waveform is

nearly restored to a sinusoid. Table 4.4 lists the levels

of the first three harmonics of each of the waveforms at

each range. These results show the profound effect on the

waveform and spectrum which is produced by viscous absorp-

tion. As the rate of thermoviscous absorption is usually

proportional to the square of the frequency, the effect on

higher-frequency components is even more marked.

Modulated waveforms are also subject to shock

formation. Figures 8 through 10 show a bifrequency signal

propagating in a lossless medium. The large amplitudeI
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Figure 7. Waveforms in Lossy Monofrequency
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Table 4.4. Amplitudes of the First Three Harmonics of a

Monofrequency Signal in Plane Wave Propagation,
with Selected Amounts of Absorption, at
Selected Ranges.

SIGMA B (a) B (U) B (0)

1 2 3

(lossless)

0.5 .9662 .2292 .0786

1.0 .8760 .3525 .2045
2.0 .6427 .3097 .2038
3.0 .4906 .2421 .1605

5.0 .3300 .1648 .1097
10.0 .1805 .0907 .0598

(GAMMA=10)

0.5 .9219 .1988 .0600
1.0 .8133 .2837 .1362
2.0 .6042 .2635 .1514
3.0 .4619 .2042 .1152

5.0 .3055 .1248 .0621

(GAMMA-3)

0.5 .8253 .1423 .0320
1.0 .6684 .1585 .0462

2.0 .4439 .1055 .0281
3.0 .3043 .0586 .0120
5.0 .1508 .0162 .0018
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cycles go into shock quickly and are reduced by finite

amplitude effects more rapidly than the small amplitude

cycles. The result is distortion of the envelope function.

Figure 11 shows an envelope function constructed by

connecting the peaks of the cycles of the modulated

waveform. As the wave propagates, the distortion of the

envelope becomes more evident. Figure 12 shows modulation

envelopes for a larger downshift ratio.

Bifrequency signals propagating in a nonlinear medium

give rise to combination frequencies due to the self-

convolution of the signal. If the two carriers are denoted

fland f 2 , the lowest frequency in the nonlinearly generated

spectrum is the difference frequency f=fl-f 2 . Figure 13

shows the difference-frequency level as a function of a

generated by a bifrequency signal for each of several

values of F. After all finite-amplitude effects have ended,

the plane-wave difference-frequency signal will continue to

propagate subject only to thermoviscous losses. Figure 14

shows the difference-frequency level multiplied by

exp(0/F). Each of the curves is tending towards a limiting

value. Figure 15 shows the far-field difference-frequency

level times exp(a/f) as a function of r for three downshift

ratios. The discrete points are derived from the numerical

solution, and the solid curves are from the asymptotic

far-field solution due to Fenlon (1972). The results

derived from the numerical solution are very similar to the

exact analytic results as either the acoustic Reynold's

4~
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Figure 11. Modulation Envelopes of a Bifrequency
Signal Having a Frequency Downshift Ratio
of 5.5, at Selected Ranges.
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number or the frequency downshift ratio, or both, are

varied. That correct results are obtained as either is

varied implies that both the scaling of the nonlinear oper-
L

ator with respect to frequency, and the effects of thermo-

viscous absorption, are correctly modeled.

The presence of nonlinearity in a lossless dispersive

medium gives rise to the formation of solitons. Figure 16

shows the numerical simulation of the interaction of two

solitons as they propagate past one another. The solitons

interact and pass through each other without change. By

contrast, a sinusoidal input signal in a nonlinear and

dispersive medium will be resolved into a set of solitons.

Each of these will propagate at its own speed. If a con-

tinuous wave signal is thus resolved into a soliton train,

it is possible for the solitons to coalesce at later times

and to regenerate the initial waveform. This behavior has

been deduced on analytic grounds by Zabusky and Kruskal

(1965), and is illustrated in the following two figures.

Figure 17 shows the history of an initially sinusoidal

signal as it propagates through a lossless, nonlinear, and

dispersive medium. This figure is a series of snapshots

of the waveform at the ranges indicated on the margin of the

figure. At G=6.45, and again at 0=14.3, the fundamental

is nearly completely regenerated. Figure 18 presents the

amplitudes of the first three harmonics as a function of

range; it is apparent that most of the energy has been

returned to the fundamental at the recurrence distances,
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Lossiess, Nonlinear, and Dispersive Medium.
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by the coupled effects of nonlinearity and dispersion.

Weak-Finite-Amplitude Propagation
of Waves from Finite Sources

The numerical method is capable of simulating weak-

finite-amplitude propagation from finite sources, by an

appropriate choice of parameters. If the Rayleigh distance

(or plane-wave collimation distance) is given by

r A/X, (4.2)
0 0

then the scaled Rayleigh distance is

a =ckr (4.3)

0 0

This quantity is also called the scaled source level; as the

quantity kr is an indication of the prominence of spherical
0

spreading, a large value of a0 implies that the nonlinear

interaction will be quasi-planar, and a small value of

implies that the nonlinear interaction will extend into

the spherical spreading region, at least if the signal level

is not reduced too far by spreading or viscous losses.

Weak-finite-amplitude propagation thus may be modeled by

using small values of C O

The scaled Rayleigh distance is used to define a new

scaled range R . If r is the physical range and 0 is the

scaled range as previously defined, then R = r/r ° =

The acoustic Reynold's number f and the attenuation
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parameter a of the fluid, are related to a new

parameter a , which is used in three-dimensional finite
0

amplitude propagation modeling, by the following equations:

a = ar (4.4)
0 0

and

cr = air, (4.5)

so that

r = 0o/ao . (4.6)

The parameter a defines the amount of absorption which0

occurs within the Rayleigh distance.

The combined-primary-wave attenuation coefficient is

defined

a T = (Xi + a 2 - _ (4.7)

so that the absorption within the Rayleigh distance is

a T= al + a2 -a . (4.8)

The results published by Fenlon and McKendree (1979)

are normalized with respect to the parametric array

response given by Westervelt (1963), which may be written

PW (R) = (p*/2YoaTR)e a-R, (4.9)

where R is the mean-carrier-frequency range,P, is a

reference pressure, Y0 is the frequency downshift ratio, a T
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is the combined-primary-wave attenuation coefficient, and a_

is the difference-frequency attenuation coefficient within

the carrier's Rayleigh distance. Thus, to convert the

parametric gain function values of Fenlon and McKendree to

pressure, it is necessary to multiply the parametric gain

functions by 2aTY R , bearing in mind that the numerical

solution uses R to denote the reference-frequency range.

An additional factor of 4 is introduced by a difference in

the definition of the reference pressure

P =~P 1 P 2 koro 0 o 0 O (4.10)

as the numerical solution contains the implicit assumption

that the peak scaled pressure is unity, so that PiP 2= 4

for a bifrequency signal. The factor k r is inversely00

proportional to the square of the frequency; thus, the

actual pressure level predicted by the weak-finite-amplitude

gain function is

p~ WF R) =G (R) -20 -ol WR 20 lg ] .1

Other beam shapes than Bessel beams from a plane

piston projector require different definitions of the

Rayleigh distance, and corresponding differences in the

parameters of the numerical solution; for example, in the

case of a Gaussian beam, the ranges are one-half those for a

plane piston projector, and the required attenuation

coefficients are doubled.
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Figures 19, 20, and 21 show the difference-frequency

levels as a function of range, as predicted by the weak-

finite-amplitude solution in solid curves, and as predicted

by the numerical solution as discrete points. Each graph is

for a particular frequency downshift ratio and shows two

curves for two different amounts of absorption. Figure 22

shows the difference-frequency level on axis as a function

of range for a frequency downshift ratio of 5.5 and a norma-

lized primary-wave attenuation coefficient of 1.0, which

represents very high attenuation. These figures indicate

that large amounts of thermoviscous absorption reduce the

difference-frequency level in the far field. The numerical

solution predicts somewhat higher values in the far field

than does the weak-finite-amplitude solution; however, the

latter has been found to underestimate the difference-fre-

quency level slightly when it is used to simulate experi-

mental results, as shown by Fenlon and McKendree (1979).

Simulations of Experiments at
Finite Amplitudes

The experiment performed by Shooter, Muir, and

Blackstock (1974) used a projector 0.0762 m in diameter

operating at a frequency of 454 kHz in fresh water. The

maximum peak source level attained was 235 dB re 1 pPa'at

I meter, corresponding to I kiloWatt peak input power.

The following paragraph gives an example of the procedure

for conversion from physical to scaled parameters.

du
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Scaled Range Relative to the Rayleigh Distance, R
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Figure 19. Difference-Frequency Level On Axis as a
Function of Range for a Bifrequency Signal
Having a Frequency Downshift Ratio of 5.5,
for Selected Values of aT
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Scaled Range Relative to the Rayleigh Distance, R

O.1 0.3 1 3 10 30

+ 0.001

0+
m -20

m -30

$4 a T 0.1

-40

Figure 20. Difference-Frequency Level On Axis as a
Function of Range for a Bifrequency Signal
Having a Frequency Downshift Ratio of 7.5,
for Selected Values of aT
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Scaled Range Relative to the Rayleigh Distance, R

t.

0.1 0.3 1 3 10 30
SI I I I I I

+ +~ + +4

-20 - .001

,4J

14 -30 - X

QJ

4 -40

-40

Figure 21. Difference-Frequency Level On Axis as a
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Scaled Range Relative to the Rayleigh Distance, R
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For a 454-kHz signal radiating from a projector

0.07b2 m in diameter, the wave number is

k w /c = 2.852"106/1480 = 1927.0, (4.12)0 0 0

and the Rayleigh distance is

r A/X = 1.398m (4.13)
0 0

The source level is defined

SL = 20 log (r p ), (4.14)

hence, the peak signal pressure is

-I SL /20
po = r 0 (4.15)

so that, for a peak source level of 235 dB re 1 pPa at 1

meter the peak acoustic pressure has the value

Po 1.398 1020= 4.02 * 10'' pPa = 4.02 • 106 pBar,(4.16)

and the Mach number has the value

Co = po/%oc0
2 = 4.02 • 106/2.25 - 10" = 1.84 10- '. (4.17)

For fresh water, the scaled source level corresponding to

SLO =235 dB in this experiment thus is

= r k r = 1.74 (4.18)
O 0 0 0

: c, iled attenuation parameter,a , is the amount of ab-

* ri zi which is suffered by the reference frequency in

ii:i4 ,ver the Rayleigh distance. As the thermo-
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viscous attenuation at 454 kHz in fresh water is given by

2 _4.91 10 (4.19)

the scaled attenuation parameter has the value

-3

a r = 6.86 • 10 (4.20)
0 0

The experiment performed by Shooter, Muir, and Black-

stock has been simulated by means of the numerical solution

with Gaussian beam input. For this reason, the results

shown in the following figures indicate scaled source levels

twice those for a plane piston projector. Figure 23 shows

the level of the fundamental on axis as a function of range,

in solid curves for the numerical results and as discrete

points for those ranges at which experimental data were

taken. The numerical solution is slightly low at small

ranges and slightly high at large ranges, as a Gaussian

beam was used to approximate the uniform source excitation.

The incipient saturation of the medium is evident, as the

10 dB increase in source level from 215 to 225 dB re 1 W Pa

has a considerably larger effect on the far-field sound

pressure level than the similar increase from 225 to 235 dB.

Further increases in source level would raise the level in

the near field, i.e. R <1, but would have a minimal effect in

the far field, R >10.

Figure 24 presents the beam widths of the fundamental

to the -10 dB point as a function of range, for several

scaled source levels. Finite-amplitude losses at the center
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Scaled Range Relative to the Rayleigh Distance, R
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Figure 23. Numerical Simulation of the Experiment of
Shooter, Muir, and Blackstock: Level On
Axis of the 454-kHz Fundamental as a
Function of Range. Source Levels 235, 225,
and 215 dB.
Numerical Results are Shown as Solid Curves,
and Experimental Results as Discrete Points.
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of the 454-kllz Fundamental to the -10 dB
Point as a Function of Range for Selected
Source Levels.
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of the beam lower its level relative to the edges, thus pro-

gressively broadening the beam as the scaled source level

increases.

Figure 25 shows the levels of the second harmonic as a

function of range for selected scaled source levels, on

axis and at a radial distance equal to the effective spot

size of the Gaussian beam, that is, to the original I/e

width at 6=0. Figure 26 shows the 10-dB beam widths of the

second harmonic as a function of range for several scaled

source levels.

Bifrequency experiments may be simulated using the

numerical method by choosing the reference frequency, to

which the equations are normalized, so that each carrier and

the difference frequency lie at one of the Fourier eigen-

frequencies; that is, so that each carrier and the dif-

ference frequency are periodic within the set of waveform

samples. The scaled source level and other parameters are

determined in the manner outlined previously, but all must be

specified in terms of the reference frequency. Thus, if N1 ,

N 2, and N_ are the Fourier eigenfrequency numbers which

correspond to the carriers and the difference frequency,

then the nominal attenuation coefficient aT as used by

Fenlon and McKendree (1979) is converted to the reference

coefficient a by the expression
O

a aT/(N
2  + N' 2 N2 (4.21)

o T 1 2 -)

The scaled source level is influenced by the frequency
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Figure 25. Numerical Simulation of the Experiment of

Shooter, Muir, and Blackstock: Level of

the 908-kiz Second Harmonic as a Function

of Range.
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dB Point as a Function of Range, for
Selected Source Levels.
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dependence of the Rayleigh distance and the wave number.

If ( is the scaled source level of the nominal carrier

frequency and peak signal amplitude, then the reference

scaled source level is given by

, = Go{ 2N_/(Ni + N 2 )]2 (4.22)

In the experiment performed by Muir and Willette, the

reference scaled source level is a,=0.00076 and the norma-

lized thermoviscous attenuation coefficient is a =0.0003.
0

This experiment used a projector 0.02 m in diameter, oper-

ating at 418 and 482 kHz to generate a 64-kHz difference

frequency. For the numerical solution, N was chosen as 2

and the reference frequency as 32 kHz. The carriers of 480

and 416 kHz corresponding to Nv=15 and N 2 =13 are a good

approximation of the actual values. Figure 27 shows the

level of the difference frequency on axis as a function of

range. The numerical solution is shown as a solid curve and

the values measured in the experiment are shown as discrete

points. Values derived from the weak-finite-amplitude

solution are also shown for purposes of comparison. Figure

28 presents the beam widths of the difference frequency as a

function of range as measured and as predicted by the

solutions. The numerical results are fairly close to the ex-

perimental values. Cases such as this, involving large fre-

quency downshift ratios, very small scaled source levels,

and large ranges, are relatively difficult for the numerical

solution to simulate. For such cases, the weak-finite-ampli-
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Figure 27. Numerical Simulation of the Experiment of
Muir and Willette: Difference-Frequency
Level On Axis as a Function of Range.
Numerical Results are Shown as a Solid Curve;
Experimental Data as 'x'; and Weak-Finite-
Amplitude Theory as "+'.
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tude solution is computationally more efficient.

The experiment performed by Eller (1974) used a pro-

jector 0.02 m in diameter, operating at a mean carrier fre-

quency of 1435 kHz in fresh water. The numerical simulation

used N =29, N =28 and N_=I, with a reference frequency of1 ' 2=28--

50 kHz, equal in this case to the difference frequency.

Figure 29 shows the difference-frequency level on axis as a

function of range, as measured by Eller and as predicted by

the numerical and weak-finite-amplitude solutions. Figure

30 shows the beam widths to the -10 dB point as a function

of range, as predicted and as measured.

Numerical Simulations at Strong
Finite Amplitudes

The fundamental assumption of the weak-finite-amplitude

solution is that the carriers are not subject to finite-

amplitude losses. As the scaled source level is increased,

finite-amplitude losses in the carriers become significant.

The reduced carrier levels in turn reduce the amount of

energy which may be downshifted to the difference frequency.

As the scaled source level becomes very large, the nonlinear

interaction is restricted to the plane-wave collimation zone

within the Rayleigh distance.

The fundamental parameters of the scaled nonlinear

propagation problem are the scaled source level a , the
o

attenuation within the Rayleigh distance of the reference
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Figure 29. Numerical Simulation of the Experiment of
Eller: Difference-Frequency Level On Axis
as a Function of Range.
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Experimental Data as 'x'; and Weak-Finite-
Ampl it ude Theory as'-.
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frequency ao, and the nature of the signal and projector.

A bifrequency pair may be characterized by its frequency

downshift ratio Y 0

The following numerical simulations are of two types:

numerical simulations of previously published research, and

simulations of experiments with scaled parameters chosen so

as to emphasize the effect of one, or to combine the effects

of several.

The scaled source level indicates the strength of the

nonlinear interaction relative to other effects of propa-

gation. The choice of scaled source level values at

1/2
approximately half-decade increments, or powers of 10 , as

10, 3, 1, 0.3, 0.1, and so on, permits a reasonable view of

the continuum of scaled source levels. The attenuation

coefficients aT are chosen in decimal increments to repre-

sent high attenuation, which dominates the nonlinearity, and

lower attenuation, which is dominated by nonlinearity.

As the Fourier harmonics are have integer ratios, integer

pairs are chosen to represent a bifrequency signal, e. g.

N = and N =5 for a frequency downshift ratio of 5.5. Thus,1 2" "

frequency downshift ratios of 5.5 and 10.5 are used in the

following simulations.

Figure 31 shows the difference-frequency level on axis

as a function of range, as predicted by the numerical solu-

tion for various scaled source levels and as given by the

weak-finite-amplitude solution for a frequency downshift

ratio of 5.5. Figure 32 shows the same functions for a fre-
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Figure 31. Difference-Frequency Level On Axis as a
Function of Range, With a Frequency
Downshift Ratio of 5.5 and aT=O.1 ,
for Selected Scaled Source Levels.
Weak-Finite-Amplitude Results are Shown as
Discrete Points, and Numerical Results as
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Figure 32. Difference-Frequency Level On Axis as a
Function of Range, With a Frequency
Downshift Ratio of 10.5 and aT= 4 .0,
for Selected Scaled Source Levels.
Weak-Finite-Amplitude Results are Shown as
Discrete Points, and Numerical Results as

Solid Curves.
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quency downshift ratio of 10.5. For each value of the

scaled source level, the difference-frequency level is the

same as the weak-finite-amplitude solution at small ranges.

As the range increases, saturation of the carriers causes

the difference frequency level to decrease. The greater

the scaled source level, the sooner the departure occurs.

For a scaled source level of I or greater, the increased

source level is almost entirely canceled by finite-amplitude

losses; the nonlinear interaction is saturated within the

Rayleigh distance.

Figure 33 shows the difference-frequency level on axis

as a function of range, as predicted by the numerical sol-

ution and as given by the weak-finite-amplitude solution, at

various scaled source levels for a frequency downshift ratio

of 5.5 and a reference combined-primary-wave attenuation

coefficient of 1.0. In this instance thermoviscous losses

are large enough to reduce the carrier levels to a large

extent within the critical range.

The on-axis pressure in a Gaussian beam propagating in

a linear manner obeys the following function of range:

Jp (R) I= PW(0) 1/(l+R2 ) 1 e a (4.23)

If the amplitude of the relative difference-frequency level

derived from numerical results is divided by the right-hand

side of Equation (4.23) the effects of thermoviscous and

spreading losses are canceled in that region of the far

field wherein only the linear loss mechanisms represented

1 .
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in Equation (4.23) remain. Figures 34, 35, and 36 each

show the difference-frequency level adjusted for thermo-

viscous and spreading losses as a function of range, for

various frequency downshift ratios and selected values of

reference attenuation coefficient. These may be called

saturation curves, as the saturation of the nonlinear

interactions is reflected in their each attaining a constant

value. From such curves, the extrapolated source level may

be deduced by finding the saturation level and referring it

back to the source.

The modified Bessel-Fubini solution derived by Fenlon

(1972) provides a good model of bifrequency interaction in

lossless media near the source. Figures 37 and 38 show

predicted pressures in a bifrequency plane wave due to the

source terms of the Bessel-Fubini solution, and as derived

from the numerical solution. The spherically-spreading

results for a scaled source level a =20 are also shown.
0

These are very similar to the plane-wave results.

The numerical work of Bakhvalov et al. (1978,1979),

concerning initially monotonic waves in thermoviscous media

at strong finite amplitudes, has been simulated numerically.

Figure 39 shows the waveforms at R=0.09 and several values

of the radial coordinate, for a scaled source level of 20

and a reference attenuation coefficient of 0.05. The cor-

responding figure from Bakhvalov's results is included for

purposes of comparison. Figure 40 shows the waveform on

axis at several ranges, for a scaled source level of 10,



86

Scaled Range Relative to the Rayleigh Distance, R

0.2 0.5 1 2 5 10 20I I I I I I I

i0 -0
102

10-i

S -10 i

-,-I

> -20

J

=, -30 - 31

01

Figure 34. Difference-Frequency Level On Axis
Compensated for Spherical Spreading and
Thermoviscous Losses, With a Frequency
Downshift Ratio of 5.5 and a T= 0 .1,
for Selected Scaled Source Levels.
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Figure 35. Difference-Frequency Level On Axis
Compensated for Spherical Spreading and
Thermoviscous Losses, With a Frequency
Downshift Ratio of 10.5 and a =4.0,
for Selected Scaled Source Levels.
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Figure 39. Waveforms in Three-Dimensional Propagation
at R=0.09 and Selected Radial Distances,
with a Scaled Source Level of 20 and
r=200, for a Gaussian Beam Input.
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an attenuation coefficient of 0.05, and a beam shape at the

source defined by I- E4 to 6=1 and zero beyond E=l. Here

also a comparison figure is included.

Bakhvalov et al. included in their results figures

illustrating the region of shock formation, specified as a

"quasi-discontinuous wave", as a function of range and

radial distance for various scaled source levels and amounts

of absorption. Figure 41 shows regions of shock formation,

defined as that region in which the harmonics equal or exceed

threshold values given on the figure. The corresponding

figure from Bakhvalov's results is included for comparison.

The numerical results are based upon the attainment of

specified harmonic levels, rather than on the slope of the

discontinuity as was used by Bakhvalov et al.; therefore the

appearance of the former and latter is not precisely the same.

A waveform having 50 percent second harmonic, 33 percent third

harmonic, and so on in the correct relative phase, will have

a discontinuity extending from the positive peak to the

negative peak of the waveform.

... .. "" ..... .. . .. .. ltl. .. .. :.. :--,...... .....k '..... ..... . i. , .. . ... .
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(a) Numerical Simulation Results Using Relative
Harmonic Levels as a Criterion.
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Figure 41. Shock Wave Domains of Existence as a Function
of Range and Radial Distance, for Various
Scaled Source Levels and Acoustic Reynold's
Numbers.
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Chapter 5

CONCLUSIONS

The first section of the conclusions deals with the

results of tests of the numerical solution to determine the

accuracy which is exhibited in these results. In the next

section, the limits of applicability of the weak-finite-

amplitude theory are discussed. The topic of near-field

calibration of parametric sources is then considered. The

conversion efficiencies which may be expected of parametric

arrays is indicated by analysis of the results of

numerical simulations. Finally, suggestions are given for

further research in the numerical solutions of nonlinear

wave equations.

Tests of the Numerical Solution

Table 5.1 shows the comparison between the matched

asymptotic lossless initially monotonic plane-wave solution

due to Blackstock and the results of numerical solution of

the lossless Burger's equation. At each of several ranges

and frequencies, the difference between the numerical

solution and Blackstock's solution is presented as a

percentage of the latter. The harmonic levels of the

numerical solution are within a few percent of Blackstock's

solution throughout the range. This degree of accuracy
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Table 5.1. Numerical Harmonic Levels of the First
Three Harmonics of a Monofrequency Signal at
Selected Ranges, and the Values of the Matched
Asymptotic Solution due to Blackstock (1966).

SIGMA NUMERICAL ANALYTIC ERROR IN
PERCENT

(a) B (a)

0.5 .9649 .9691 -0.4
1.0 .8747 .8801 -0.6
2.0 .6435 .6484 -0.8
3.0 .4891 .4937 -0.9
5.0 .3274 .3333 -1.7

(b) B (a)
2

0.5 .2274 .2298 -1.0
1.0 .3483 .3528 -1.3
2.0 .3102 .3134 -1.0
3.0 .2444 .2428 0.7
5.0 .1682 .1667 0.9

(c) B (a)
3

0.5 .0791 .0813 -2.7
1.0 .2102 .2060 2.0
2.0 .2025 .2070 -2.2
3.0 .1581 .1610 -1.8
5.0 .1055 .1111 -5.0
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confirms the validity of the numerical solution of the

lossless Burger's equation.

Tables 5.2a, b, and c show the far-field difference-

frequency level times exp(a /F), as predicted by the solution

of Fenlon (1972) and as derived from the numerical solution

of the lossy Burger's equation. The agreement between

analytic and numerical results is fairly good. For some of

these simulations, as many as 4000 iterations of the

nonlinear operator were required. The presence of bias in

the results is therefore to be expected, though the largest

error does not exceed 12 percent.

The numerical simulation of bifrequency propagation in

a lossy medium requires the numerical solution to apply the

nonlinear operator simultaneously at several frequencies, so

as to simulate self-convolution of the input signal, and to

apply the correct thermoviscous losses to each of the

resulting frequency components. In fact, the analytic

far-field difference-frequency levels are reproduced by the

numerical solution with an amount of error not much larger

than may be expected due to the bias of the lossless

nonlinear operator itself. It is evident that the number

of waveform samples and the number of steps per unit range

will not significantly affect the results, so long as each

is large enough. The ability of the numerical solution to

simulate bifrequency propagation in a lossy medium

indicates that both nonlinearity and viscous losses are

properly modeled.
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Table 5.2. Difference-Frequency Level in the Far Field
Times exp(aj/r) As Predicted by the Numerical
Solution and by the Solution due to FenJlon
(1972), for Selected Frequency Downshift Ratios
and Values of r.

GAMMA ANALYTIC NUMERICAL ERROR IN

(Fenlon,1972) PERCENT

(a) frequency downshift ratio 5.5

11 .0428 .043 -0.5
16 .0583 .057 -2.2
22 .0724 .070 -3.3
31 .0847 .081 -4.3
44 .0885 .085 -3.9
62 .0817 .077 -5.7
88 .0678 .065 -4.1

124 .0530 .051 -3.8

(b) frequency downshift ratio 7.5

15 .0314 .031 -1.3
21 .0415 .040 -3.6
30 .0531 .051 -4.0
42 .0620 .060 -3.2

60 .0649 .060 -7.6
85 .0598 .056 -6.4

120 .0497 .047 -5.4
170 .0387 .038 -1.8

(c) frequency downshift ratio 10.5

21 .0224 .022 -1.8
30 .0301 .029 -3.7
42 .0380 .036 -5.3
59 .0443 .040 -9.7
84 .0464 .041 -11.6

119 .0427 .041 -11.0
168 .0355 .032 -9.8
238 .0276 .025 -9.4
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Simulated propagation in a lossless, dispersive medium

is a severe test of the numerical solution. Since

reasonably accurate simulations of dispersive propagation

result from the use of the numerical solution, it may be

assumed that the method of solution is valid.

The preceding tests apply to plane-wave propagation,

for which the pertinent equation is equation 4.23. In order

to accommodate spreading as in equation 4.22, the diffrac-

tion term must be handled by the method of diffusion-in-

frequency. The present numerical implementation works well

out to R on the order of 20; spherical spreading may be

assumed to prevail beyond this range. The numerical

solution is designed to allow the user to choose a value

of R beyond which spherical spreading is assumed. If this

value is chosen carefully, the resulting error is not

intolerable.

The ability of the numerical solution to produce

correct results when a combination of factors is present,

such as nonlinearity and attenuation or nonlinearity and

dispersion, indicates that the implementation which was

used, regarding each of these effects as independent over

small distances, is sufficiently accurate. There exist

certain areas in which the computational efficiency could

be improved. These are discussed in the suggestions for

further research. The remaining computational problems are

also discussed in the last section.
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Limits of Applicability of the

Weak-Finite-Amplitude Theory

The results of numerical analysis confirm that the weak-

finite-amplitude solution is invalidated by finite-amplitude

losses in the carriers. For relatively lossless cases, a

simple constraint suffices to ensure the applicability of

the weak-finite-amplitude theory: the maximum range of

interest must be considerably less than the critical range

of either of the carriers, so that they do not lose a

significant amount of energy in generating harmonics or

modulation frequencies.

The limiting case as the scaled source level becomes

infinite, physically the case for very high frequencies

or very large apertures, is that of collimated plane-wave

propagation; the nonlinear interaction is confined to the

very near field of the source. The largest scaled source

levels actually used in computation, on the order of 20,

are virtually indistinguishable from plane-wave propagation

in the near field. In these cases, the carriers of a

bifrequency signal do not go into shock, but attain second

harmonic levels of 20 to 25 percent at most. The greatest

amount of energy is transferred to the sum frequency and its

harmonics, which will attain a shock profile in a relatively

lossless medium.

In very lossy media, the weak-finite-amplitude solution

is applicable at higher scaled source levels than in
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less lossy media. The linear losses reduce the carrier

amplitudes within the near field, thus suppressing part of

the nonlinear interaction. For example, with a frequency

downshift ratio of 5.5 and a scaled source level of 0.1,

the numerical and weak-finite-amplitude results differ by

8 dB at R=20 if the combined-primary-wave attenuation

coefficient is 0.001; whereas if it is increased to 1.0,

the numerical and weak-finite-amplitude results are

virtually the same out to R=30.

Near-Field Behavior and Calibration
of Parametric Sources

The numerical solution provides a means of modeling the

operation of parametric arrays in both the unsaturated and

saturated regimes. The pressure waveform or spectrum may I.
be obtained from the numerical solution at any point

within the Fresnel zone, as the solution of the diffraction

term is based upon a Fresnel approximation. Zemanek (1971)

published a paper which investigates the near-field

behavior of the beam from an axisymmetric vibrating piston

of finite extent. His method has been implemented with

excellent results, but as it is vastly slower than the

diffusion-in-frequency technique, it is not suited for

iterative computations.

The effective length of a parametric source operating

in a relatively lossless medium may be much longer than the
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Rayleigh distance of the projector at the difference

frequency, which in many practical cases may be too long to

allow calibration of the difference-frequency signal in an

anechoic facility of practical size. The weak-finite-

amplitude theory is capable of predicting the near-field

behavior in the Fresnel zone of unsaturated arrays. The

numerical solution as preseutly implemented is also r
restricted to the Fresnel zone, but will accommodate

saturated parametric arrays. Thus calibration of the

difference-frequency characteristics of a saturated

parametric source is possible within its near field by

comparison with the results of the numerical solution.

Conversion Efficiencies of
Parametric Arrays

The amplitudes of carriers from a parametric source are

reduced by finite-amplitude losses, by spreading, and by

thermoviscous losses. Eventually, they will be reduced to a

point where they no longer transfer a significant amount of

energy to the difference-frequency signal. The difference

frequency will propagate thereafter under the influence of

spreading and thermoviscous losses. From the difference-

frequency level in this region, an extrapolated source level

may be deduced. A difference-frequency signal radiated

from the source position at this level would give rise to

the pressure observed in the far field as a result of the
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parametric interaction.

It is of interest to determine what may be the extra-

polated source level of the difference frequency relative

to the level of the carriers. This may be done by analysis

of the numerical results. Values of absorption, scaled

source level, frequency downshift ratio or modulation type,

and beam shape are chosen. Tie signal is allowed to

propagate until nonlinear energization of the difference

frequency is seen to have ended. The far-field difference-

frequency pressure is converted to a pressure at the source

by application of Equation (4.12), or its appropriate

analogue for other beam types, and this equivalent source

pressure is expressed in dB relative to the peak pressure

which was actually transmitted.

The numerical solution requires the peak pressure at the

source to be unity to account for the correct scaling of

the nonlinear operator. Thus, the numerical value obtained

from the program at any frequency, range, and radial

distance is that which would be produced by a unit peak

source. The Rayleigh distance does not appear explicitly in

this calculation. The following figures show the extra-

polated source levels of the difference frequency as a

function of scaled source level of the carriers f or selected

combined-primary-wave attenuation coefficients.

Figure 42 shows the difference-frequency extrapolated

s ource levels for a bifrequency signal having a frequency
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Figure 42. Difference-Frequency Extrapolated Source
Level in dB Relative to the Peak of the
Carriers at the Source for a Frequency Down-
shift Ratio of 5.5 and Selected Combined-
Primary-Wave Attenuation Coefficients, aT.
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downshift ratio of 5.5, and Figure 43 for a frequency

downshift ratio of 10.5. As an example of their use, con-

sider a bifrequency signal having a frequency downshift

ratio, y . of 5.5, a scaled source level, a OPof 0.3, and

a combined-primary-wave attenuation coefficient, aT, Of 1.0.

By reference to Figure 42 it may be determined that the

extrapolated source level of the difference frequency is

38 dB below the peak level of either of the carriers at the

source. The numerical solution may be used as shown above to

generate families of curves of this kind for any modulation

type and range of source levels, limited only by the amount

of space available for storage of waveform samples, and the

amount of time available for computation.

Suggestions for Further Research

The method of numerical solution employed in this thesis

produces good results in most cases. The validity of the

basic approach to the problem is confirmed by the quality

of its results. The method is subject to failure in certain

respects, and as these impose the major restrictions on the

usefulness of the numerical solution, it is the purpose of

this section to discuss the causes of the computational

problems and the benefits which may be expected from

alleviating them.

The simple linear interpolator used in the solution of

the lossless Burger's equation is highly satisfactory, but
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it requires a very small step size, G, if the highest

input frequency is a large multiple of the reference

frequency or Fourier fundamental. If in addition the scaled

source level, Go, is large, the number of iterations

needed to reach the far field, R>1, can become very large.

The higher-quality interpolators which were tried in solu-

tions to the lossless Burger's equation provided the same

accuracy as the linear interpolator with a auch larger step

size until a discontinuity was formed, at which point

instabilities would develop in the vicinity of the discon-

tinuity. A method using a high-quality interpolator in

regions where a discontinuity will not cause difficulties

could improve the efficiency of the numerical solution.

The diffusion-in-frequency technique is implemented by

means of an implicit Crank-Nicholson formula. This method

is stable and efficient, and works well out to R on the

order of 20, at which point the error in the level on axis

is 0.3 dB and the largest errors in beamwidth are about 10

percent. The reason for the errors, which become very

large at larger values of R, has been found to be the way

in which the beam profile is sampled rather than the Crank-

Nicholson formula itself. Other methods of solution, which

are less efficient than the Crank-Nicholson technique but

used the same beam sampling technique, have been tried and

found subject to the same sampling problem. This problem is

associated with the spreading of the radial coordinate sys-

tem as it follows the beam propagating away from the source.
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Spreading is characteristic of propagation from a source

of finite extent. In the far field of a linear projector,

the radial beamwidth is proportional to the range in the

direction of propagation, and the angular beamwidth is

constant. Therefore, if a given number of beam samples at

a given spacing suffices near the source, then either the

number of samples or the radial distance increment must be

increased at larger distances if the edges of the beam are

to remain visible as it propagates. The latter option, to

increase the radial sample spacing when necessary, has been

chosen for two reasons. First, the amount of storage

available is fixed, and thus the number of samples cannot be

allowed to grow without limit, and second, the time required

for calculation increases rapidly as the number of radial

samples increases.

The expansion of the radial sample spacing is done in

the following way. The beam samples at the larger spacing

are interpolated or selected from among those presently

existing, which represent samples at a smaller sample

spacing. The samples at expanded coordinates outside the

domain previously defined are all assumed to be zero.

This technique leads to progressive deterioration of the

results beyond R=20, with considerable distortion of the

beam shape by R=50.

Spherical spreading may be assumed to apply at large

ranges. The manner in which this option is implemented in

the numerical solution, although it works very well in
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modeling linear diffraction, leads to difficulties in the

nonlinear cases, as the phase distribution of the

nonlinearly generated frequencies cannot be predicted a

priori. In this thesis, the Crank-Nicholson formula is

used exclusively for results confined to R less than about

30, and for longer ranges a transition zone, e. g., from

R=10 to R=20, is defined and the Crank-Nicholson and

imposed-spherical-spreading results are matched at the

limits of the transition zone.

Advances in the nonlinear operator and in the expan-

ding-grid diffraction technique should allow rapid and

convenient numerical solution of many problems which are

described by the second-order-nonlinear wave equation,

more quickly and more accurately than the present

implementation. The techniques of Zemanek (1971) and of

Sziklas and Siegman (1974) should be useful points of

departure in improving the numerical solution of the dif-

fraction term. Zemanek demonstrated the usefulness of direct

numerical integration of the diffraction integral. Although

this method is not fast enough to be used in an iterative

numerical solution, it might be used in performing the radial

coordinate expansion which is required from time to time,

without the errors associated with the present sampling tech-

nique. Sziklas and Siegman show a method for evaluating the

diffraction integral in spherical coordinates by the use of

weighted Fourier transforms, in a modified system of

coordinates. These coordinates are such that a spherically
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spreading beam will not change its shape or its relative

size as it propagates.
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APPENDIX

LARGE-FINITE-AMPLITUDE COMPUTER PROGRAM

SOURCE LISTINGS

The following source listings give the code for the

two programs used in deriving the numerical results pre-

sented in this thesis. Other versions differ only in slight

details of the coding, usually in the format of output.

The program named PRPGT2 is the main program which solves

the plane-wave nonlinear propagation problem. The program

named PRPGT8 solves the case of axisymmetric three-dimen-

sional propagation. Both of these programs use the solution

to Burger's equation expressed in Equation (3.4), as this

was the formulation used to derive most of the results

presented in this thesis.
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C PRPGT8 RELEASE 13.0 - 8 MARCH 1981 - F S MCKENDREE
C
C FOR FURTHER INFORMATION CONTACT ----
CC FRANCIS S MCKENDREE

C APPLIED RESEARCH LABORATORY
C ROOM 123A
C P 0 BOX 30
C STATE COLLEGE, PA 16801
C
C PPPPPP RRRRRR PPPPPP GGGGG TTTTTTT 88888
C P P R R P P G G T 8 8
C P P R R P P G T 8 8
C PPPPPP RRRRRR PPPPPP G GG T 88888
C P R R P G G T 8 8
C P R R P G G T 8 8
C P R R P GGGGG T 88888
C
C THIS PROGRAM SOLVES THE SECOND-ORDER-NONLINEAR PARABOLIC WAVE
C EQUATION.
C
C REVISION 4 FEBRUARY 1981 -- WAVEFORM PRINTOUT CAPABILITY ADDED
C AT RANGES CALLED FOR IN 'SMAX' AND RADIAL COORDINATES GIVEN IN
C ARRAY 'EPRNT'. MAXIMUM 8 RADIAL VALUES AT EACH DISPLAY CYCLE;
C SPECIFY RADIAL VALUE LESS THAN ZERO TO END DISPLAY AT GIVEN
C RANGE, OR SMAX LESS THAN ZERO TO END ITERATIONS.
C
C REVISION 8 MARCH 1981 -- (1) DELTA SIGMA MAY BE CHANGED AT THE
C BEHEST OF THE USER TO THE NEW VALUE 'DSIGN' AT THE RANGE
C 'SIGCH'; (2) AN AXIAL BEAM LEVEL IS DEFINED AS THE MAXIMUM
C FOUND WITHIN THE 1/2 DB WIDTH OF A LINEAR GAUSSIAN BEAM AT EACH
C RANGE AND IS DISPLAYED AND USED AS THE ZERO-DB LEVEL FOR THE
C BEAM WIDTH CALCULATIONS.
C

COMPLEX U0(256), UZ(256) W(256) CF CFC, SPMD(129), AD AF, SPI
REAL ROOTV (3)/0.7071068 6.5 0 316227A/ BW(3 129), EPSV(41)
REAL U(258,40), ATTF(129) biMG(256), 6 R( 2563
REAL QLL/1.0007, RSPH/1. 6 /' RDIFF/0.300/ /SE
INTEGER*4 TITLE 16)/'PROG', RAM 'PRPG','T8 R','ELEA','SE

1 '13.0',' 8 " MARC .'H I, 19A",I1 "" "" '" "" "

INTEGER IDAT(23 JDAT(2)
INTEGER IDIFFR(16) ISQ(256)
LOGICAL NOLOSS NOAECD NODIFF, NODISP, NOPRNT, NOSPM
LOGICAL SW S12 SI1 S1o S09, NONONL, SW2
REAL EPRNT(8), AXISL(1293

C

C SENSE SWITCH OPTIONS:
C SWITCH 11 ON TO LIST INITIAL VARIABLES.
C SWITCH 10 ON TO SUPPRESS DIFFRACTION.
C SWITCH 9 ON TO ENABLE RECORDING OF DATA.
C SWITCH 8 ON TO SUPPRESS LOSSES.
C SWITCH 7 ON TO SUPPRESS DISPERSION.
C SWITCH 6 ON TO SUPPRESS NONLINEAR OPERATOR.
C SWITCH 5 ON TO READ QLL RSPH, AND RDIFF
C SWITCH 4 ON TO PRINT INITIAL WAVEFORMS.
C
C SETUP.
C FILE 'ICARD' IS USED FOR ALL SUBSEQUENT CONTROL INPUT.
C

READ(5,8000) ICARD
CALL SSWTCH(5 SW2)
IF (SW2) READ(5,8020) QLL, RSPH, RDIFF

100 SW=.FALSE.
200 CALL SSWTCR(7,NODISF)

CALL SSWTCH(8, NOLOSS)
NOSPM=. FALSE.
IF (NOLOSS .AND. NODISP) NOSPM=.TRUE.
CALL SSWTCH(10,NODIFF)
CALL SSWTCH(6,NONONL)
CALL DATE(IDAT)
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CALL LINETT ( TITLE )
C

C ZERO ATTF, DSP, AND SPMD ARRAYS
C

CF=CMPLX( 0 0. )
DO 150 I=i,129
ATTF (I)=O.
SPMD(Il)=CF

150 CONTINUE
C

C INPUT CONTROL VARIABLES:
C INL - NUMBER OF WAVEFORM/RADIAN FREQUENCY SAMPLES; NUMBER OF
C POINTS IN THE NON LINEAR OPERATOR.
C IFB - NUMBER OF RADIAL SAMPLE POINTS
C ICASE - CASE NUMBER FOR REFERENCE PURPOSES
C NCOMP - NUMBER OF FOURIER COMPONENTS WHICH ARE TO BE ASSUMED TO
C EXIST IN TILE INPUT SIGNAL, FOR PURPOSES OF NORMALIZATION; IF
C ZERO, NO NORMALIZATION IS PERFORMED.
C

READ(ICARD,8000,END=7200) INL, IFB, ICASE, NCOMP
C
C IDIFFR - ARRAY STORING THE DFT FREQUENCIES AT WHICH THE
C NEED FOR RADIAL EXPANSION IS TO BE TESTED
C DETERMINE THE NUMBER OF FREQUENCIES SELECTED IN 'ISF'.
C

READ(ICARD,8000) IDIFFR
K=I
DO 300 1=1 lb
IF (IDIFFRtI) .LT. 0) GO TO 400
K=I

300 CONTINUE
K=1l

400 ISF=K
C
C REAL COEFFICIENTS -- SIGNAL DEPENDENT PARAMETERS:
C SZER - SIGMA SUB ZERO THE SACLED SOURCE LEVEL
C (OR SCALED RAYLEIGH DISTANCE)
C AZER - A SUB ZERO, THE ATTENUATION OF THE FUNDAMENTAL WITHIN
C TIE RAYLEIGH DISTANCE
C B - WIDTH OF RADIAL SAMPLE SAPCE RELATIVE TO RHO SUB ZERO
C NOTE: THE PROGRAM USES THE SIGNAL PARAMETERS TO DEDUCE
C RHO SUB ZERO.
C
C ALL REFERENCES TO THE 'FUNDAMENTAL' REFER TO THE SIGNAL WHICH
C EXECUTES ONE CYCLE IN THE SAMPLE WINDOW AND WHICH HAS AN AMPLITUDE
C EQUAL TO THE PEAK AMPLITUDE OF THE COMPOSITE SIGNAL.
C
C -- MEDIUM DEPENDENT PARAMETERS:
C EMM - DISPERSION PARAMETER
C TSUBC - RELAXATION TIME
C
C -- PROGRAM OPERATIONAL PARAMETERS:
C SMAX - MAXIMUM SCALED RANGE OF INTEREST
C DSIG - DELTA SIGMA ThE RANGE INCREMENT
C DBLV LEVEL OF THL BEAM EDGE RELATIVE TO THE CENTER WHICH WILL
C TRIGGER RADIAL EXAPNSION OF COORDINATES
C SIGCH - IF GREATER THAN ZERO, THE RANGE AT WHICH DELTA SIGMA
C WILL BE CHANGED
C DSIGN - NEW VALUE FOR DELTA SIGMA IF A CHANGE IS DESIRED
C EPRNT - RADIAL DISTANCE(S) OF INTEREST FOR PRINTOUT
C

READ(ICARD,8020) SZER, AZER B
READ ICARD,8U20) EMM TSUBC'
READ ICARD,8U20) SMA,, DSIG, DBLV, SIGCII, DSIGN
READ ICARD,8020) (EPRNT(K),K=l,8)

C
cCALL LTNEN'W( ICASE, IDAT)

C GAMMA - SCALED ATTENUATION COEFFICIENT.
C IRF - NUMBER OF RADIAN FREQUENCY COMPONENTS IN THE UFT.
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C DE - NORMALIZED RADIAL DISTANCE STEP, DELTA EPSILON.
C DEPS - DELTA EPSILON USED IN THE DIFFRA SUBROUTINE. THIS PARAMETER
C FOLLOWS THE RADIAL EXPANSION OF THE COORDINATE SYSTEM.
C STST - TEST SIGMA MAXIMUM; DECREMENTED TO ALLOW FOR ROUNDOFF ERROR
C SLEVEL - SPECTRUM LEVEL NORMALIZATION FACTOR.
C TESTCH - SIGMA VALUE FOR TEST PURPOSES AT WHICH DELTA SIGMA IS TO
C BE CHANGED. IF NO CHANGE IS DESIRED, IT IS TWICE THE MAXIMUM
C RANGE OF INTEREST, WHICH IS NEVER ATTAINED.
C

GAMMA = SZER/AZER
IRF= INL/2
JRF=IRF+I
DE=B/FLOAT(IFB-1)
DE PS=DE
STST=SMAX-0.5*DSIG
SLEVEL =1.
IF (NCOMP .NE. 0.) SLEVEL=0.5*SQRT(FLOAT(INL))/FLOAT(NCOMP)
TESTCH=2.*SMAX
IF (SIGCH .GT. 0.) TESTCH=SIGCH-0.5*DSIG

C
C IFILE - DSRN FOR PERMANENT RECORD
C NZP - NUMBER OF RANGE STEPS BETWEEN OUTPUT CYCLES.
C IFBO - NUMBER OF RADIAL DISTANCE STEPS BETWEEN PRINTOUT
C CYCLES
C

READ(ICARD,8000) IFILE, NZP, IFBO
MZP=O

C
C TITLE PAGE INFORMATION.
C

WRITE(6,9010) INL, IFB ISF
WRITE(6,9170) (IDIFFR(kK),KK=I,ISF)
WRITE(6,9020) SZER, AZER, SMAX, DSIG
WRITE(6,9030) B, DE GAMMA
WRITE (6,9110) EMM TSUBC
WRITE (6,9330) DBL QLL RSPH
IF INOLOSS) WRITE( 6,9040)
IF (NODISP) WRITE 6,9050)
IF (NODIFF) WRITE 6 9210)
IF (NOSPM) WRITE(6 9220)
IF (NONONL) WRITE 6,9260)
IF (SIGCH .GT. 0. WRITE(6,9600) SIGCH, DSIGN

600 CALL LINENW(ICASE, IDAT)
C
C SET UP THE INITIAL SIGNAL WAVEFORMS.
C

CALL UNIT2D( U, 258, 40, INL, IFB, B, DMAG, DE, ICARD )C

C FILL IN THE EPSILON VALUE ARRAY
C

FF=-DE
DO 700 1=1,IFB
FF=FF+DE
EPSV(I)=FF

700 CONTINUE
C
C COMPUTE THE ATTENUATION FACTORS
C

CALL RALPHA(ATTF,INL,JRF ,DSIG,GAMMA)
C NOTE: PURGE ATTF ARRAY OF VALUES LESS THAN
C I.E-8; THEY WOULD NOT CONTRIBUTE ANYWAY.
C

DO 800 1=2 JRF
IF (ATTF(I .LT. I.E-8) ATTF(I)=U.

800 CONTINUE
C
C COMPUTE THE DISPERSION FACTORS.
C

CALL CDISP( SPMD, JRF, DSIG, EMM, TSUBC )
C

p.
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C CREATE SPECTRAL MODIFICATION ARRAY SPMD IF NECESSARY.
C

DO 1000 I=1,JRF
CFC=1.
IF (NoISP) GO TO 900
CFC=SPMD( I)

90U IF (NOLOSS) GO TO 1000
CFC=CFC*ATTF (I)

1000 SPMD(I)=CFCCI
C OUTPUT THE HEADER INFORMNATION IF REQUESTED -- KREC COUNTS THE
C RECORDS.
C

CALL SSWTCH(9 NORECD)
NORECD=.NOT. N6 RECD
IF (NORECD) GO TO 1100
KRE C= I
DF=DSIG*SZER
WRITE( IFILE,8510) KREC,INL,IFB,1SF,ICASE,IRF,NZP,IFBO, IDIFFR
WRITE (IFILE,8520) IDAT, NODISP, NOLOSS, NODIFF
WRITE( 1FILE,8500) SZER AZER SIAX DSIC,B,EHM,TSUBC,DBLV,

I GAMMA, DF:, ATTt, SPMD
C
C DISPLAY INITIAL FUNCTION IF REQUESTED.
C
1100 CALL SSWTCH(I1 s11)

IF (.NOT.S11) 60 TO 1400
CALL SSWTCH(4,SW)
IF (.NOT.SW) GO TO 1300
IDUM=3+( INL/ 10)
DO 1200 I=1 IFB
CALL LINECK~ IDUM, ICASE, IDAT)
WRITE (6,9070) I
WRITE(6,9080 )(U(KK,I),KK=1,INL)

1200 CONTINUE
CALL LINENW(ICASE, IDAT)

1300 IDUM=3+(IRF/5)
CALL LINECK( IDUM, ICASE, IDAT)
WRITE (6,9120)
WRITE( b,9130 )(SPMD(KK) KK=1,IRF)
CALL LINENW(ICASE, IDAT)l

C
C INITIALIZE FOR RANGE STEP PROCESSING.
C DS - PARAMETER FOR NONLINEAR OPERATOR.
C NSTEP - ITERATION COUNTER.
C SIGMA - SCALED RANGE.
C BFAC - BEAM WIDTH NORMALIZATION FACTOR.
C EFAC - ENERGY NORMALIZATION FACTOR.
C
1400 DS=FLOAT(INL)*DSIG/6.2831853

NSTEP=0
SICMA=0.
BFAC=I.
EFAC=1.
FIF=FLOAT( INL)

C
C INCREMENT SIGMA, THE SCALED RANGE.
C
1.500 SIGMA=SICMA+DSIG
C
C SEE IF DELTA SIGMA MUST BE CHANGED -- IF SO, DO SO.
C

IF (SIGMA .LT. TESTCH) GO TO 1550
RSIGCH-DSIGN/DSIG
Do 1520 J=1,JRF
SP I=SPMD( I)
SP',A=CABS (SP I) **RSIGC1I
SPMvP=RSIGCi*ATAN2(AlIAG(SPI ),REAL(SPI))
SPMD(1)=SPMA*CMiPLX(C0S(SPMNP ), SlN(SPMP))

1520 CONTINUE
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TESTCH=2.*SMAX
DSIG=DSIGN
STST=SMAX-0.5*DSIG

CC AFTER (OR WITHOUT) CHANGE OF DELTA SIGMA, INCREMENT COUNTERS.

1550 NSTEP=NSTEP+1

MZP=MZP+1
C
C APPLY THE NONLINEAR OPERATOR WITHIN THIS LOOP TO EACH SET OF
C WAVEFORMS SAMPLES AT THE RADIAL DISTANCE INCREMENT COUNTED BY J.
C

DO 2400 J=I,IFB
C

C MOVE THE J-TH RADIAL WAVEFORM SAMPLE INTO UR ARRAY.
C

DO 1600 K=1 INL
UR(K)-U(K,J5

1600 CONTINUE
IF (NONONL) GO TO 1800

C
C NON-LINEAR OPERATOR ON UR INTO UZ.
C

DX=0.
DO 1700 II=I,INL
DX=DX+I.
DL-DS*UR( II)
XT=DX+DL
IF (XT .LT. 0.) XT=XT+FIF
MO= XT
MI=MO+I
DL=XT-FLOAT(MO)
IF (MO .LT. I) MO=MO+INL
IF (MO .GT. INL) MO=MO-INL
IF (MI .LT. 1) MI=MI+INL
IF (Ml .GT. INL) MI=MI-INL
UZ(II)=UR(MO)*(I.-DL) + UR(M)*DL

1700 CONTINUE
GO TO 2000

C
C BYPASS NONLINEAR OPERATOR.
C
1800 DO 1900 II=1 INLUZ(II)=CMPLX(UR(II),O.)

1900 CONTINUE
C
C DIRECT FOURIER TRANSFORM -- TIME TO FREQUENCY DOMAIN.
C
2000 CALL DFT ( UZ, W, ISQ, INL, 2 )
C
C APPLY ATTENUATION (DISPERSION).
C

IF (NOSPM) GO TO 2200
DO 2100 K=2 IRF
UZ(K)=UZ(K)ISPMD(K)

2100 CONTINUE
UZ (JRF)=UZ(JRF)*CABS(SPMD(JRF))

C
C RESTORE RADIAN FREQUENCY SAMPLES TO U ARRAY.
C
2200 14M=0

DO 2300 K=I,JRF
MM=mM+1
U(MM, J)=REAL(UZ(K) )
MM=MM+ 1
U(MM J)=AIMAG(UZ(K))

2300 CONTINUE
2400 CONTINUE
C
C SEE IF DIFFRACTION IS TO BE BYPASSED.
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C
IF (NoDIFF) GO TO 3100

C PERFORM THE ZERO-FREQUENCY 'DIFFRACTION'

C FIRST PICK UP THE ZERO-FREQUENCY (DFT CELL NUMBER 1) COMPONENTS;
C THEN 'DIFFRACT' THEM USING SUBROUTINE DIFFRO.
C

DO 2500 I=1 IFBUO(1)=CM.PLX(U ( , I), U(2, I) )

2500 CONTINUE
CALL DIFFRO(UO,IFB,SIGMA,DSIG,SZER)
DO 2550 I=1 IFB
U(I I)REALUO (I))
U(2. =AIMAG (UOfl 41)

2550 CONIINUE
C
C PERFORM THE DIFFRACTION CALCULATION
C FOR EACH OF THE RADIAN FREQUENCIES, SAMPLES AT EACH RADIAL
C DISTANCE ARE MOVED INTO ARRAY UO.
C

FI=O.
LL=I
MM=2
DO 3000 I=2,JRF
LL=LL+2
MM=M, M+2
FI=FI+I.

C
C SELECT THE RADIAL SAMPLES AT FREQUENCY I, MOVE INTO U0 ARRAY.
C

DO 2600 J=I IFB
UO(J)=CMPLXzU(LL,J),U(MM,J))

2600 CONTINUE
C
C PERFORM THE DIFFRACTION.
C

CALL DIFFRA ( UO, IFB, DSIG, DEPS, SZER, FI, QLL, SIGMA, RSPH )
C
C RESTORE THE DIFFRACTED SPECTRAL SAMPLES TO THE U ARRAY.
C

DO 2700 J=I IFB
U(LL, J)=REAL(UO(J))
U (MM,J )=AIMAG(UO(J)

2700 CONTINUE
3000 CONTINUE
C
C OUTPUT THE SPECTRUM IF REQUESTED.
C
3100 IF (MZP .NE. NZP) GO TO 3900

IF (NORECD) GO TO 3300
KREC=KREC+
WRITE(IFILE 8530) KREC,ICASE,DEPS,SIGMA
DO 3200 JJ=IIFB
WRITE (IFILE,8540) (U(KK,JJ),KK=I,INL)

3200 CONTINUE
C
C DETERMINE THE AXIAL LEVELS AND THE BEAM WIDTHS.
C
3300 LL=-1

MMO
SST=SIGMA*0. 2399/(SZER*DEPS)
FRS=I.
DO 3340 I=I,JRF
LL=LL+2
MM=MM 2
IF (I .GT. 1) FRS=FLOAT(I-1)
NAXIS=I+IF[X(SST/FRS)
DO 3320 J=1 IFB
DMAG(J)=SQRT(U(LL,J)**2+U(MM,J)**2 )/SLEVEL

3320 CONTINUE
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FMAX=DMAG( I)
IF (NAXIS .LT. 2) GO TO 3330
CALL MAXFCN(DMAG, NAXIS, FMAX, INDEX)

3330 AXISLV(I)=FMAX
3340 CONTINUE

LL=-1
MM=0
DO 3600 I=I ,JRF
LL=LL+2
MM=MM+2
DO 3400 J=I IFB
DMAG(J)=SQ R(U(LL,J)**2+U(MM,J)**2)/SLEVEL

3400 CONTINUE
DO 3500 J=l 3
TEST=AXISLV ()*ROOTV(J)
CALL FINDI(I ,IFB,EPSV,DMAG,TEST,POINT,IDUM)
BW(J I)=O.
IF (DUM :EQ. 1) BW(J,I)=POINT*BFAC

3500 CONTINUE
3600 CONTINUE

CALL LINECK( 2, ICASE, IDAT)
WRITE(6,9300) BFAC

C
C BYPASS/FINISH SPECTRUM OUTPUT.
C
3900 KFBO=1

JDUM=2+( (IRF+9)/10)
C
C SEE IF RADIAL COORDINATE EXPANSION IS REQUIRED. EACH OF THE
C NON-ZERO FREQUENCIES IN ARRAY IDIFFR IS TESTED TO SEE IF THE BEAM
C HAS BROADENED SUFFICIENTLY TO REQUIRE RADIAL EXPANSION.
C

IF ((SIGMA/SZER) .LT. RDIFF) GO TO 4500
SQM=-I.
DO 4100 I=IISF
IDI=2*IDIFFR( I )+1
SQS=SQRT( (U(IDI IFB)**2+U(IDI+IIFB)**2)/
I (U IDI, I)**2+U IDI+1, )*'2))
IF (SQS .GT. SQM) SQM=SQS

4100 CONTINUE
IF (SQM .LT. DBLV) GO TO 4500

C
C EXPAND RADIAL COORDINATES.
C

LL=- 1
MM=0
DO 4400 J=I,JRF
LL=LL+2
MM=MM+2
DO 4200 K=I IFB
UO(K)=CMPLX(U(LL,K),U(MM,K))

4200 CONTINUE
CALL EXPAND(UO IFB,XFAC)
DO 4300 K=I,IFA
U(LL,K)=REAL(UO (K))
U(MM K)=AIMA(U(K))

4300 CONTINUE
4400 CONTINUE
C
C ADJUST BFAC, THE BEAM WIDTH NORMALIZATION, DEPS THE RADIAL
C DISTANCE INCREMENT, AND EFAC THE BEAM ENERGY NORMALIZATION
C FACTOR, TO REFLECT THE EXPANbED RADIAL COORDINATES.
C

BFAC=BFAC*XFAC
DEPS=DEPS*XFAC
EFAC-EFAC*SQRT(XFAC)
IDUM=2
CALL LINECK(IDUM ICASE,IDAT)
WRITE(6,9290) S1GMA, BFAC, EFAC

CI
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C SELECT EACH OF THE IFB RADIAL SAMPLE SPECTRA IN SUCCESSION
C AT SPATIAL FREQUENCY J.
C
4500 DO 5100 J=1,IFB
C
C SELECT RADIAN FREQUENCY SAMPLES AT FREQUENCY K.

C LL=-1
MII=0
DO 4600 K=]1,JRF
LL=LL+2
MMt=Mm+2
UO(K)=CMPLX(U(LL,J) ,U(MM,J))

4600 CON~.TINUE
NE=J RI
NB=JRF+1
DO 4650 K=NB,INL
NE=NE-1
UO(K)=CONJG(UO (NE))

4650 CONTINUE
IF (J .NE. KFBO) GO To 4800
IF (MZP .NE. NZP) GO TO 4800

C
C PICK UP THE MAGNITUDE
C

DO 4700 KK=1,IRF
DMAG(KK)=CABS(UU (KK) )/SLEVEL

4700 CONTINUE
C
C DISPLAY SPECTRUM IF REQUESTED.
C

KFBO=KFBO+IFBO
CALL LINECK(JDUM, ICASE, IDAT)
WRITE( 6,9190) J, NSTEP
WRITE(6,9080) (DMAG(KK),KK=1,IRF)

C
C INVERSE FOURIER TRANSFORM THE DATA AT EACH RADIAL SAMPLE DISTANCE.
C THIS SECTION CONVERTS THE NON-NEGATIVE FREQUENCY COMPONENTS
C STORED IN 'U' INTO REAL WAVEFORMS AT EACH OF THE RADIAL DISTANCES.
C
4800 CALL DFT(UO, W, ISQ, INL, -2)
C
C RESTORE THE WAVEFORMS INTO THE U ARRAY.
C
4900 DO 5000 K=1 INL

U(K J)=REALCUO(K))
5000 CONtINUE
5100 CONTINUE
C
C OUTPUT THE AXIAL LEVELS AND THE BEAM WIDTHS.
C

IF (MZP .NE. NZP) GO TO 5200
IDum=4+(jRF+9)/ 10
CALL LINECK(IDUM ICASE IDAT)
WRITE(6,9610) NSiEP, SIGMA
WRITE(6,9080 )(AXISLV(KK),KK=1,JRF)
IDUM=2+(JRF+9) /]10
CALL LINECK(IlDUM, ICASE, IDAT)
WRITE( 6,9140)
WRITE(6 9080)( BW(J KK) KK=1,JRF)
CALL LIhJECK( IDUM, ICASE, IDAT)
WRITE(6,915U)
WRITE( b ,9080 )(BW(2,KK),KK=1,JRF)
CALL LINECK( IDUl, ICASE, IDAT)
WRITE 6 b,9160)
WRITE( b )9080 )(BW(3,KK),KK=1,JRF)

C
C RETURN FOR NEXT RANGE STEP.
C
5200 R=SIGMA/SZER
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IF (SIGMA .GE. STST) GO TO 7000
IF (MZP .GE. NZP) MZP=O
CALL LINECK( 1 ,ICASE, IDAT)
WRITE(6 9060) NSTEP, SIGMA, R
GO TO 1500

C PRINT WAVEFORM(S) IF REQUESTED; SEE IF TASK IS FINISHED.

C
7000 CALL LINENW ( ICASE, IDAT )

BB=BFAC*B
IDUM= ( INL/10)+4
DO 7080 I=I 8
EPI=EPRNT(15
IF (EPI .LT. 0.) GO TO 7120
IF (EPI .GT. BB) GO TO 7120
EO=I.+(EPIIDEPS)
LE=IFIX(EO)
FEO=EO-FLOAT (LE)
GEO=1 .-FEO
ME=LE+1
DO 7040 J=I,INL
DMAG(J)=U(J,LE)*GEO+U(J,ME)*FEO

7040 CONTINUE
CALL LINECK ( IDUM, ICASE, IDAT )
WRITE(6,9240) NSTEP, SIGMA, R, EPI
WRITE (6,9080)
WRITE(6 9080) (DMAG(K),K=IINL)

7080 CONTINUE
7120 READ(ICARD 8020) SMAX

IF (SMAX .LT. 0.) GO TO 7160
READ(ICARD 8020) (EPRNT(K),K=1,8)
STST=SMAX-6.5*DSIG
GO TO 1500

7160 IF (NORECD) GO TO 100
KREC-1
WRITE(IFILE,8530) KREC,ICASE,DEPS,SIGMA
GO TO 100

7200 WRITE(6,9090)
STOP

C

C INPUT FORMATS.
C
8000 FORMAT(1615)
8020 FORMAT(8FI0.I)
C
C OUTPUT FORMATS FOR DATA STORAGE FILE.
C
85U0 FORMAT(IP8EI0.3)
8510 FORMAT(1I018)
8520 FORMAT( 2A4 3LI)
8530 FORMAT( 2116 IP6EIO.3)
8540 FORMAT( IP32I0 .3)
C
C OUTPUT FORMATS FOR PRINTED RECORD.
C
9010 FORMAT('OINL',14,' IFB',13,' ISF',13)MX
9020 FORMAT( '0 SZER' IPEI2.3,' AZER',E12.3, SMAX',E2.3,

1 " DSIG',EI.3)
9030 FORMAT 0 B IPEI2.3 DE' ,E12.3,' GAMMA',E12.3)
9040 FORMAT 'OLINEAR LOSSES S6PPRESSED.')
9050 FORMAT 'ODISPERSION SUPPRESSED.')
9060 FORMAT ' STEP' ,15 , SIGMA',IPEI2.3" R'. E12.3)
9070 FORMAT '0INITIAL FUNCTION AT RADIAL fTEP',I4)
9080 FORMAT 'IPIOEl2.3)

9090 FORMAT OPRO6RAM REACHED NORMAL TERMINATION.')
9110 FORMAT 0 EMM' IPE12.3.' TSUBC',E12.3)
9120 FORMAT '0 SPECTR6M MODIFICATION ARRAY (ATTENUATION/DISPERSION):')
9130 FORMAT'' IPIOEI3.4)
9140 FORMAT '0 3 DB BEAM WIDTHS:')
9150 FORMAT '0 6 DB BEAM WIDTHS:')
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9160 FORMAT '010 DB BEAM WIDTHS:')
9170 FORMAT( 'OTEST FOR DIFFRACTION:',1615)
9190 FORMAT '0 SPECTRUM SAMPLE' 14,' AFTER OPERATOR STEP',15)
9210 FORMAT( 'ODIFFRACTION OPERATOR SUPPRESSED.')
9220 FORMAT( 'ORADIAN FREQUENCY SPECTRUM MODIFICATION SUPPRESSED.')
9240 FORMAT('OSTEP',I5,' SIGMA, R:',IP2EI2.3,'; RADIUS:',

I E12.3
9260 FORMAT 'ONONLINEAR OPERATOR SUPPRESSED.')
9290 FORMATOAT SIGMA=',IPE9.2, ° RADII EXPANDED TO',E9.2,' AND BEAM EN

1ERGY TO' E9.2)
9300 FORMAT('6CURRENT BFAC',IPE12.4) 3
9330 FORMAT(,'O DBLV' IPEI2.3 OLL°E12.3 RSPH' E12.3)
9600 FORMAT '0AT SIGMA=',lPEI2.4 ' DELA SIGMA BtCOMES',E12.4)
9610 FORMAT( 'OAXIAL BEAM LEVELS AT STEP',15,' SIGMA',iPEI2.4)

END

SUBROUTINE DIFFRO ( UO, N, SIGMA, DSIG, SZER )C
C THIS SUBROUTINE PERFORMS THE 'ZERO-FREQUENCY' DIFFRACTION FOR
C THE PRPGT8 NONLINEAR WAVE EQUATION SOLUTION PROGRAM.
C
C RATIONALE:
C SPHERICAL OR I/R SPREADING IS IMPOSED. THE DIFFUSION-IN-FREQUENCY
C ASSUMES THE FORM OF LAPLACE'S EQUATION (DEL SQUARED PHI = 0) IN THE
C LIMIT AS FREQUENCY GOES TO ZERO. A SOLUTION TO LAPLACE'S EQUATION
C IS 1/R.
C
C DEFINITIONS OF ARGUMENTS
C UO - COMPLEX DATA ARRAY TO BE 'DIFFRACTED'
C N - NUMBER OF POINTS IN UO
C SIGMA - SCALED RANGE ATTAINED
C DSIG - SCALED STEP SIZE
C SZER - SCALED DIFFRACTION PARAMETER (RAYLEIGH DISTANCE)
C
C SOLI DEO GLORIA 5, XI 1979 -- F S MCKENDREE
C

COMPLEX F UO(N)
COMPLEX U (50)

C
C RN - NEW RANGE
C RO - OLD RANGE
C F - RANGE DECREMENT FACTOR
C

RNS IGMA/ SZER
RO= (SIGMA-DSIG)/ SZER
F=CSQRT(CMPLX( I. ,-RO)/CMPLX( I. ,-RN))C

C APPLY RANGE DECREMENT FACTOR TO THE DATA
C

DO 1000 I=I N
UQ(I)=UO(I)IF

1000 CONTINUE
C
C SPREAD THE DATA SPHERICALLY
C

DG=( I.+SIGMA)/ (1 .+SIGMA+DSIG)
EG=O.
UO(1)=UQ(1)
DO 2000 I=2,N
EG=EG+DG
J=IFIX(EG)+1
K=J+1
FC=EG-FLOAT( J- 1)
HG=I.-FG
UO (I)=UQ(J)*HG+UQ(K)*FG

2000 CONTINUE
RETURN
END
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SUBROUTINE EXPAND ( P, N, XFAC )C

C 100 PERCENT RADIAL EXPANSION -- INVOLVES NO INTERPOLATION.
C

COMPLEX P(N), CF/(0.,O.)/
M"1
K=I

1000 MfM+2
IF (M .GT. N) GO TO 2000
K=K+1
P(K)=P(M)
GO TO 1000

2000 K=K+1
IF (K .GT. N) GO TO 8888
DO 3000 I=K,NP(I)=CF

3000 CONTINUE
8888 XFACf2.

RETURN
END

SUBROUTINE MAXFCN ( F, N, FMAX, INDEX )

C F - REAL ARRAY TO BE SEARCH FOR MAXIMUM
C N - LARGEST SAMPLE NUMBER TO BE SEARCHED
C FMAX - RETURNED AS THE LARGEST VALUE IN F
C INDEX - RETURNED S THE LOCATION OF FMAX IN F
C
C SOLI DEO GLORIA 8 III 1981 - F S MCKENDREE
C

REAL F(N)
FMAX F(I)
INDEX=I
IF (N .LT. 2) GO TO 8888
DO 1000 I=2 N
IF (F(I) .L. FMAX) GO TO 1000
FMAX=F(I)
INDEX=I

1000 CONTINUE
8888 RETURN

END

SUBROUTINE UNIT2D ( U, IN, IF, INL, IFB, RHOZER, RHO, DR, ICARD )
C
C THIS SUBROUTINE PROVIDES INITIALIZATION OF THE DATA ARRAY IN THE
C TIME DOMAIN AS REQUIRED BY PRPGTS. THREE BEAM TYPES ARES PROVIDED,
C INCLUDING THOSE USED BY BAKHVALOV ET. AL.
C
C SOLI DEO GLORIA 21 DECEMBER 1979 -- F S MCKENDREE
C
C DEFINITIONS OF ARGUMENTS:
C U - REAL ARRAY OF TWO DIMENSIONS IN BY IF WHICH WILL CONTAIN
C THE ORIGINAL TIME WAVEFORMS UPON RETURN.
C IN IF - DIMENSIONS OF THE U ARRAY.
C INL - NUMBER OF SAMPLES OF THE WAVEFORM AT A GIVEN RADIAL
C DISTANCE -- I. E. THE NUMBER OF SAMPLE ROWS ALONG THE
C DIRECTION OF PROPAGATION.
C IFB - NUMBER OF SAMPLES ACROSS THE WIDTH OF THE BEAM AT EACH
C TIME SAMPLE -- I. E., THE NUMBER OF SAMPLE COLUMNS ACROSS
C THE RADIAL DIRECTION.
C RHOZER - RHO SUB ZERO NO LONGER USED BUT INCLUDED FOR PURPOSES
C OF COMPATABILITY WITH EARLIER ROUTINES.
C RHO - REAL ARRAY USED FOR TEMPORARY STORAGE OF THE BEAM PROFILE
C AMPLITUDE.
C DR - RADIAL DISTANCE STEP SIZE.
C ICARD - DSRN TO BE USED FOR CONTROL INPUT TO 'UNIT2D'.
C

REAL RHO(IF), U(IN,IF)

46,.
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C
C ZERO THE U ARRAY.
C

DO 500 I=I,IF
DO 500 J=I,IN
U(J I)=O.

500 CONfINUE
C

C READ A DATA 'CARD'. THIS CARD SPECIFIES THE FREQUENCY, AMPLITUDE,C AND PHASE OF UP TO TWO COMPONENTS.
C Fl LESS THAN ZERO CAUSES THE SUBROUTINE TO NORMALIZE THE
C SAMPLE SET TO UNIT PEAK AMPLITUDE AND RETURN.
C IF THE PHASE IS IN THE RANGE 0 TO 360 DEGREES A GAUSSIAN BEAM
C PROFILE IS USED; IF IN THE RANGE 360 TO 720 DEGREkS, A BOXCAR PROFI
C LE IS USED; AND IF IN THE RANGE 720 TO 1080 DEGREES, A FOURTH ORDER
C POLYNOMIAL IS USED.
C

WRITE(6,9100) ICARD
WRITE(6,9000)

1000 READ(ICARD,8000) Fl Al P1, F2, A2, P2
IF (Fl .LT. 0.) GO TO 40O
R=-DR
IF (P1 .LT. 360.) GO TO 1200
IF PI .LT. 720.) GO TO 1800
IF P1 .LT. 1080.) GO TO 2200

C
C GAUSSIAN BEAM -- DEFAULT OR PHASE < 360
C
1200 WRITE(6,9020)

DO 1500 I=1,IFB
R=R+DRRH{O(1)=EXP (- (R*R))

1500 CONTINUE
GO TO 3000

CC UNIFORM EXCITATION TO R=I - PHASE < 720
C
1800 PI=PI-360.

WRITE(6,9040)
DO 2000 I=I,IFB
R=R+DR
RHO(I)=I.
IF (R .GT. 1.) RHO(I)=O.

2000 CONTINUE
GO TO 3000C

C FOURTH ORDER POLYNOMIAL BEAM
C
2200 PI=PI-720.

WRITE(6,9060)
DO 2500 I=I,IFB
R=R+DR
RHO(I)=I./(( 1.+R*R)**2)

2500 CONTINUE
C
C HAVING THE BEAM PROFILE IN R, INSERT THE FREQUENCY COMPONENTS.
C
3000 TAU=6.2831853/FLOAT(INL)

WRITE(6,9080) Fl, Al, P?, F2, A2, P2
P1=PI*0.01745329
P2=P2*0.01745329
T=-TAU
DO 3500 I=I,INL
T=T+TAU
S=AI*COS(FI*T+PI )+A2*COS(F2*T+P2)
DO 3200 J=1 IFB
U(I J)=U(I,.A)+S*RHO(J)

3200 CONTINUE
3500 CONTINUE

IF (F2 .LT. 0.) GO TO 4000

Ik
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GO TO 1000
C
C NORMALIZE TO UNIT PEAK AMPLITUDE -- FIRST FIND THE MAXIMUM, THEN
C ADJUST THE AMPLITUDES ACCORDINGLY.
C
40UO AMAX=-I.

DO 4400 I=l,INL
DO 4200 J=I IFB
A=ABS(U(I,J3)
IF (A .GT. AMAX) AMAX=A

4200 CONTINUE
4400 CONTINUE

AMAX- ./AMAX
DO 4800 I=1,INL
DO 4600 J=1 IFB
u(I J)=U(IJ)*AMAX

4600 CONTINUE
4800 CONTINUE

RETURN
8000 FORMAT(8FI0
9000 FORMAT" 0UNID F1',10X,'A"',1OX,'P1',10X,'F2',1OX,'A2',1OX,

1 'P2')
9020 FORMAT('OGAUSSIAN')
9040 FORMAT( 'OUNIFORM )
9060 FORMAT '04TH ORDER')
9080 FORMAT '0",IOX IP6EI2.3)
9100 FORMAT 'ODATA TAKEN FROM FILE',I5)

END

SUBROUTINE FINDI ( NB, NE, ORDI, ABSC, ROOT, POINT, ITEST )C
C 'ROOT' FINDING SUBROUTINE. THE ARRAY ABSC IS SEARCHED BETWEEN
C ELEMENTS NB AND NE TO FIND THE VALUE ROOT. POINT IS RETURNED
C AS THE LINEARLY-INTERPOLATED VALUE, DETERMINED FROM ARRAY ORDI
C AT WHICH THE FUNCTION IN ABSC WILL ATTAIN THE VALUE ROOT. ITEST
C IS RETURNED AS ZERO IF NO SUCH VALUE IS FOUND AND AS I IF SUCH
C A VALUE IS FOUND.
C
C DESIGNED/CODED BY F S MCKENDREE, 31 V 1978.
C

REAL ORDI(NE), ABSC(NE)C

C DETERMINE IF 'ROOT' IS ATTAINED.
C

K=NB
AOLD=ABSC(K)

1000 K=K+
ANEW=ABSC(K)
IF (AOLD .LE. ROOT .AND. ANEW .GE. ROOT) GO TO 2000
IF (AOLD .GE. ROOT .AND. ANEW .LE. ROOT) GO TO 2000
AOLD=ANEW
IF (K .LT. NE) GO TO 1000
POINT=O.
ITEST=O

8888 RETURN
C
C FIX VALUE OF 'POINT' CORRESPONDING TO 'ROOT'.
C

2000 ITEST=1
IF (ANEW .EQ. AOLD) GO TO 3000
ORDO-ORDI (K-1)
ORDN=ORDI (K)
POINT = ORDO + (((ROOT-AOLD)/(ANEW-AOLD))*(ORDN-ORDO))
GO TO 8888

C
C EQUAL AMPLITUDES BOTH EQUAL TO ROOT.
C CHOOSE A VALUE FOR POINT MIDWAY IN TIE CORRESPONDING ORDINATES.
C3000 POINT=(0ORDI (K- 1)+ORD[ (K))*0.5
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GO TO 8888
END

SUBROUTINE LINECK (LINES, 
ICASE, IDAT )

C CLEAN PRINTER CONTROLLER.

C REVISED 9 OCTOBER 1978 TO INCLUDE TITLE ARRAY.
C
C LINECK(LINES ICASEIDAT) - DETERMINES IF 'LINES' MAY BE ADDED
C TO THE CURRENT PAGE; IF NOT INCREMENT PAGE COUNTER AND MOVE TO
C HEAD OF NEXT PAGE, WRITING THE TITLE ARRAY, 'ICASE' AND THE DATE
C FIELD 'IDAT'.
C
C LINETT(DUMMY) - MOVE THE TITLE ARRAY POINTED TO BY 'DUMMY' INTO
C THE 'TITLE' ARRAY.
C
C LINENW(ICASE,IDAT) - PAGE IMMEDIATELY, DISPLAYING 'ICASE' AND
C 'IDAT'; LINE COUNTER 'LOCAL' BECOMES 2.
C
C SOLI DEO GLORIA 5 OCTOBER 1978.
C

INTEGER NPAGE/0/ LOCAL/60/, IDAT(2)
INTEGER TITLE(163, DUMMY(16)

C
C SEE IF PAGING IS REQUIRED -- IF SO, PAGE

LOCAL=LOCAL+LINES
IF (LOCAL .LT. 60) GO TO 1000
LOCAL=LINES+2

700 NPAGE=NPAGE+1
WRITE(6,9000) TITLE, ICASE, IDAT, NPAGE

1000 RETURN
C SET UP THE TITLE FIELD

ENTRY LINETT(DUMMY)
DO 2000 1=1,16
TITLE(I)=DUMMY(I)

2000 CONTINUE
GO TO 1000

C PAGE IMMEDIATELY
ENTRY LINENW ( ICASE, IDAT )
LOCAL=2

C GO TO 700 THE TITLE'S FORMAT
C
90 00 FORMAT('I',16A4,' CASE',18,' DATE ',2A4,' PAGE',I 4)

END

SUBROUTINE RALPHA(ATTF,INL, IRF,DSIGMA,GAMMA)
C

C COMPUTE THE ATTENUATION FACTORS FOR SPECIFIED INPUT.
C

REAL ATTF(IRF)
C

ATTF(1)=I.
K=O
DSG=DSIGMA/GAMMA
DO 1000 I=2,IRF
K=K+1
E=-FLOAT(K*K)*DSG
IF (E .LT. -60.) E=-60.
ATTF(I)=EXP(E)

1000 CONTINUE
RETURN
END

SUBROUTINE CDISP ( DSP, IRF, DSIG, EMM, TSUBC )
C
C EVALUATE THE DISPERSION COEFFICIENT.

b
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C DSP - ARRAY TO STORE THE COEFFICIENTS.
C INL - NUMBER OF FOUPIER COMPONENTS.
C DSIG - RANGE STEP PAA2AMETER.
C EMM - DISPERSION PARAMETER.
C TSUBC - RELAXATION PARAMETER.
C
C SOLI DEO GLORIA OCTOBER MCMLXXVIII.
C

COMPLEX DSP(IRF), CA
C

DSPC1)=1.
FI=O.
FT-O.
DM=--DS IG*EMM
DO 1000 I=2,IRF
FI-FI+1.
FT=FT+TSUBC
CA=DM*(F I**2)/CMFLX(1. FT)
IF (CABS(CA) .LT. I.E-63 GO TO 800
DSP 1I) = CEXP(CA)
GO TO 1000

800 DSP(I)=1.
1000 CONTINUE

DSI(IRF)=REAL(DSP(IRF))
RETURN

A END

SUBROUTINE DIFFRA(W,N,DS,DEPS,SZER,FI,QLL,SIGMA,RSPH)
C
C THIS SUBROUTINE PERFORMS THE DIFFUSION-IN-FREUENCY CALCULATIONS
C BY MEANS OF A GAUSS ELIMINATION SOLUTION OF THE IM1PLICIT CRANK-
C NICHOLSON FORMULATION OF THE PROBLEM.
C
C SOLI DEO GLORIA 29 OCTOBER 1980 -- F S MCKENDREE
C
C ADDITION 6 NOVEMBER 1980 -- CODE FOR SPHERICAL SPREADING ADDED
C AFTER THE DESIGN OF THIS DATE.
C

COMPLEX W(N) P(50), AJ(50), BJ(50), CJ(50), AF(710), SF(50), D(50)
COMPLEX Al, A2, Bl,'B2, RI, A3, A4, A5
COMPLEX CG
REAL B/I./, C/2.

C REAL SS1/1.065/, SS217.O00I/, SS3/1.750/, SS4/2.000/

C TEST RANGE FOR SPHERICAL SPREADING.
C

RG=SIGMA/(SZER*FI)
IF (RG .GT. RSPH) CO To 5000

C
C SET UP NUMBER OF ITERATIONS.

T-C*DS*QLL/(O. 5*FI*SZER* (DEPS**2))
NT=IFIX( T)
IF (NT .LT. 1) NTIl
DSIG=O.i5*DS/FLOAT(NT)

C
C SET UP FOR ITERATION.
C

AI=CMPLX(0. ,DSIG/(2.*FI*S/"ER*(DEPS**2)))
A2=CiMPLX (0. B*DSIG/(4.*SZER*FI*DEPS))
A3=1.+2.*Ail
A4=2 .*C*AI
A5=1.+A4
CJ ( )=-Z.*C*AJ.
BJ(1)1I.+CJ(1)
B2l1.-2.*AI
DO 1000 I=2,N
BJ( 1)=B2
FJ=1 .+BI(2.*FLOAT( I-I))
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CJffl=J Al*FJ
AJ I.1 =A1*(FJ-2.)

1000 CONTINUE
C
C PERFORM THE FINITE-DIFFERENCE EVALUATION AS MANY TIMES AS IS
C REQUIRED.
C

Do 3500 II=1,NT
DO 1500 I=I,N
PCI) =w C )

1500 CONTINUE
P (N+1)=1.5*P(N)-O.5*PN-~1)
D(1 )=WC 1)*A5-W(2)*A4
EPSOU.
DO 2000 1=2 N
EPS=EP S+DEP
D(I)=P(I-1)*C-A1+A2/EPS)+P(I)*A3+P(I+I)*(-AI-A2/EPS)

2000 CONTINUE
AF(1)=BJ(I)
SF I =~D(l)
DO 2500 1=2 N
R1=AJ(I)/AFtI-1)

SF (I =D( I)+R1*SF(I-1)
2500 CONTINUE
C
C ON EVALUATING THE NEW TIME ROW, RESTORE THE SAMPLES TO THE W ARRAY.
C

W(N)=SF(N)/AF(N)
K=N
Do 3000 I=2,N
K=K-1
W(K)=(SF(K),CJ(K)*WCK+1 ))/AFCK)

3000 CONTINUE
3500 CONTINUE

IF CRG .LT. O.5*RSPH) GO To 8888
8888 RETURN
C
C SPHERICAL SPREADING BY IMPOSITION -- FIRST
C APPLY THE RANGE DECREMENT CG, THEN INTERPOLATE TO ACCOUNT FOR
C THE RECTANGULAR SAMPLE GRID.
C
5000 RI=DS/CSZER*FI)

CG=C PlX ( 1.,RG/CMPLX(1.,RG+Rl)
Do 52001=N
P(l)=W(l)*C6

*5200 CONTINUE

DG=RG/ (RG+RI)
IF CRC :LE: (SS3*RSPH) DG=RG/ (RG+SS4*RI)
IF (RG .LE. SS1*RSPH)) DG=RG/(RG+SS2*Rf)

DO 5500 1=2,N
EG=EG+DG
J=IFIX(EC)+i.
K=J+ I
FC=EC-FLOAT(J- 1)
HC=I.-FG
WCI)=P(J)*HCG+PCK)*FC

5500 CONTINUL
CO TO 8888
END

SUBROUTINE SSWTCH(N,V)
LOGICAL V,SC13)/.FALSE.,.FALSE.,.FALSE.,.FALSE.,.FALS..,

1 .TRUL, .FALSE. ,TRUE. ,FALSE.

2 .=~lFALSE., .FALSE., .TRUJE., .FALSE. /

V=. FALSE.
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IF ((L .GT. 13) .OR. (L .LT. 1)) GO TO 8888V=S(L)

8888 RETURN
END

SUBROUTINE OFT ( Z, W, ISQ, N, NC )
C
C DISCRETE FOURIER TRANSFORM SUBROUTINE WITH PASSED ARGUMENTS
C
C THIS SUBROUTINE IS OPTIMIZED FOR RAPID SEQUENTIAL PERFORMANCE
C OF SUCCESSIVE DIRECT AND INVERSE TRANSFORMS OF THE SAME SIZE.
C
C DEFINITIONS OF ARGUMENTS:
C Z - ON CALL, INPUT COMPLEX SEQUENCE; ON RETURN, OUTPUT
C COMPLEX SEQUENCE.
C W - COMPLEX WORKING ARRAY; THESE VALUES MUST NOT BE CHANGED
C BETWEEN CALLS TO THE SAME SIZE DFT.
C ISQ - INTEGER ARRAY USED TO STORE THE SEQUENCE NUMBERS
C WHICH ARE EXCHANGED IN TIIE BIT REVERSAL.
C N - NUMBER OF POINTS IN THE FOURIER TRANSFORM; MINIMUM
C LENGTH OF THE Z W AND ISQ ARRAYS.
C NC - CONTROL INTEGER VARIABLE; LESS THAN ZERO FOR INVERSE
C TRANSFORM, OTHERWISE DIRECT IS ASSUMED.
C
C THE MINIMUM ALLOWABLE N IS 8 AND THE MAXIMUM IS 4096; THE VALUE
C OF N MUST BE AN INTEGER POWER OF 2.
C

COMPLEX C, D, Z(N), W(N)
REAL*8 CO SI CD SD SS ARC, SO
INTEGER JU(123, J(12), I§Q(N), OLDN/-9999/

C
C DETERMINE IF THE VALUE OF N CALLED FOR IS CURRENT.
C IF SO, CHOOSE DIRECT TRANSFORM (IOFS=O) OR INVERSE TRANSFORM.
C

IF (OLDN .NE. N) GO TO 7000
1000 IOFS=O

IF (NC .LT. 0) IOFS=N2
C
C FIRST DFT LOOP; MULTIPLY BY AMPLITUDE FACTOR AND TAKE THE
C SUM AND DIFFERENCE. SINCE THE COMPLEX EXPONENTIAL SAMPLE
C FOR THIS LOOP IS I, COMPLEX MULTIPLICATION IS NOT REQUIRED.
C
3000 DO 3100 I=I,N2

II- I+N2

D=ZmI)

C=C*AMPL
D=D*AMPL
Z ( I)=C+D
Z II)=C-D

3100 CONTINUE
C
C BIT-REVERSED RESEQUENCING OF THE Z ARRAY. USE THE VALUES
C STORED IN ISQ TO CONTROL THE SEQUENCING.
C

IN2=N2+1
DO 4500 I=2,N2
IN2=IN2+1
IF (ISQ(I) .LT. 0) GO TO 4500
C=Z(ISQ( I))
Z(ISQ ())=Z(ISQ(IN2))
Z(lSQ IN2))=C

4500 CONTINUE
C
C REMAINING ITERATIONS OF THE DFT.
C

DO 5100 I=2,L2N
K=JU(I)
KK=JD(I)
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KI=K+K
M=-KI
DO 5100 II=I,KK
M--M+KI
J=I-KK
DO 5100 111-,K
J=J+KK
L=I II+M
LL=L+KC--Z( L)
D=Z (LL)

IF (J.EQ.I) GO TO 5000
D=D*W(J+IOFS)

5000 Z(L)=C+D
Z (LL)=C-D

5100 CONTINUE
C
C RETURN AFTER TRANSFORM IS COMPLETED.
C

9999 RETURN
C
C EVALUATE THE COMPLEX EXPONENTIAL SAMPLES IN THE W ARRAY, THE
C POWERS OF 2 IN ASCENDING AND DESCENDING ORDERS RESPECTIVELY
C IN JU AND JD, AND THE BIT-REVERSE PAIRS FOR SWAPPING IN ISQ.
C
7000 OLDN=N

SS=DFLOAT(N)
ARG=-6. 28318530718DO
SS=ARG/SS
SD=DSIN SS
CD-DCOS SSCO=CD
SI=SD
N8=N18
N4=N8+N8

N2=N4+N4
N4P2=N4+2
N2P2=N2+2
W(I)=CMPLX(I. ,0.)
J=l
OLDO=O
W(N4+1)=CMPLX(O. ,-I.)

7200 J=J+l
COP=SNGL(CO)
SIP=SNGL(SI)
WJ)=CMPLX(COP SIP)
W J+N4) =CMPLX(IP -COP)
IF (J.GT.N8) GO T6 7300
W(N2P2-J)=CMPLX(-COP,SIP)
W (N4P2-J) =CMPLX(-SIP,-COP)
SO=SI
SI=SI*CD+CO*SD
CO=CO*CD-SO*SD
GO TO 7200

C
C DETERMINE THE TRANSFORM NORMALIZATION FACTOR AMPL AND FILL IN
C THE REMAINDER OF THE W ARRAY.
C
7300 APL-I./SQRT(FLOAT(N))

K=N2
DO 7400 I=I,N2
K=K+
W(K)-CONJG(W(1) )

7400 CONTINUE
C
C DETERMINE THE LOG TO THE BASE 2 OF N, L2N, AND FILL IN THE JU
C AND JD ARRAYS.C

KK-I
A=ALOGIO(FLOAT(N))*3.321928 + 0.5
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L2N=IFIX(A)
LL=L2 N
DO 7500 L=I,L2N
JU (L)=KK
JD (LL)=KK
LL=LL-1
KK=KK+KK

7500 CONTINUE
C
C FILL IN THE ISQ ARRAY WITH THE BIT-REVERSE PAIRS.
C

DO 8100 I=1,N
ISQ(I)=-1

8100 CONTINUE
MM=I
DO 8500 I=2,NK=I-I

KK=0
DO 8200 L=I,L2N
JJ=K-JD(L)
IF (JJ .LT. 0) GO TO 8200
KK=KK+JU (L)
K=JJ
IF (K .LE. 0) GO TO 8300

8200 CONTINUE
8300 KK=KK+1

JJ-KK-I
IF (JJ .LE. 0) GO TO 8500
MM=MM+I
ISQ (MM)=i
ISQ(MM+N2 )=KK

8500 CONTINUE
GO TO 1000
END



135

C PROGRAM PRPGT2
C LARGE FINITE-AMPLITUDE WAVE PROPAGATION PROGRAM -- RELEASE SIX
C AS REVISED IN FEBRUARY 1981.
C
C DEFINITION OF MAJOR PROGRAM VARIABLES:
C UZERO - CONTAINS THE INITIAL OR BASE WAVEFORM, BEFORE THE
C NONLINEAR OPERATOR
C USIGMA - CONTAINS THE WAVEFORM AFTER THE NONLINEAR OPERATOR
C ALIST - ARRAY FOR STORING LISTS OF REAL NUMBERS ON INPUT
C Z - COMPLEX ARRAY FOR THE SPECTRUM
C W - COMPLEX ARRAY FOR THE VALUES OF EXP(J2PI/N)
C ISQ - INTEGER ARRAY FOR THE BIT-REVERSAL PAIRS.
C CALFA - COMPLEX ARRAY FOR THE FACTORS DEFINING THE ATTENUATION
C AND/OR DISPERSION DURING PROPAGATION
C ATTN - .TRUE. IF ATTENUATION IS ENABLED
C DISP - .TRUE. IF DISPERSION IS ENABLED
C RELX - .TRUE. IF RELAXATION IS ENABLED
C AMPLR - .TRUE. IF THE OPERATOR IS NOT TO COMPENSATE FOR
C FINITE AMPLITUDE LOSSES -- THIS IS THE DEFAULT
C ATRK - ARRAY TO STORE SPECTRAL POINTS FOR PRINTED DISPLAY
C ITRK - ARRAY TO STORE FREQUENCIES OF THE SPECTRAL POINTS
C TO B5 PRINTED
C ILIST - ARRAY TO STORE DFT CELL NUMBERS OF SPECTRAL POINTS
C TO BE PRINTED
C
C REVISION 11 JULY 1980 - AMPLITUDE NORMALIZATION TO A SPECIFIED NUMB
C OF EQUAL INPUT COMPONENTS PROVIDED VIA INPUT VARIABLEc i DUMq'.
C

REAL UZERO(2048), USIGMA(2048), ALIST(1O), ATRK(11), RALFA(2048),
I RZ(4096)
COMPLEX Z(2048), W(2048), CALFA(1024), CF
LOGICAL ATTN DISP RELX LV AMPLR S04. S05
INTEGER IDAT(2), IfRK(11 , ILIST(1l), IQ(2048)

C

EQUIVALENCE (Z(I),RZ(I)), (CALFA(1),RALFA(l))
C
C READY TO RUN.
C
800 LPPAGE=O

FMUL=I.
CALL DATE(IDAT)
READ(5,8020,END=7000) ICARD

C
C INPUT CASE NUMBER ICASE NUMBER OF FOURIER SAMPLES IFOUR, AND
C SCALED FOURIER FUNDAMENTAL FSUBF.
C
1000 READ(ICARD 8020,END=7000) ICASE, IFOUR, FSUBF

IMAXF= IFOU/2
C
C INPUT MEDIUM PARAMETERS:
C ADELTA- ATTENUATION COEFFICENT;
C CZERO - SMALL-SIGNAL SPEED OF SOUND;
C BETA - PARAMETER OF NONLINEARITY;
C EMM - SIMPLE DISPERSION PARAMETER;
C TSUBC - RELAXATION TIME OF MEDIUM, TIMES SCALING FREQUENCY.
C

READ(ICARD,8000,END=7000) ADELTA, CZERO, BETA, EMM, TSUBR
C
C SENSE SWITCH OPTIONS:
C 12 - ON TO ENABLE DISPERSION
C 11 - ON TO ENABLE RELAXATION
C 10 - ON TO ENABLE ATTENUATION
C 9 - ON TO INPUT SIGNAL PARAMETERS, OFF FOR SCALED PARAMETERS
C EPSLON - SIGNAL MACH NUMBER
C FREQ SIGNAL FREQUENCY IN HERTZ
C GAMMA - SCALED ACOUSTIC REYNOLD'S NUMBER
C CLAMBD - SCALED RELAXATION PARAMETER
C SMALLD- SCALED SIMPLE DISPERSION PARAMETER
C RSUBC - PLANE-WAVE CRITICAL RANGE OR SHOCK
C FORMATION DTSTANCE
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C 8 - INVISCID OPERATOR DISABLED
C 7 - ON TO DISABLE NORMALIZATION OF INITIAL FUNCTION.
C

CALL SSWTCH(12,DISP)
CALL SSWTCH( 11, RELX)
CALL SSWTCH(1O ATTN)
CALL SSWTCH(9,LV)
IF (LV) GO TO 1500

C
C ENTER SCALED PARAMETERS
C

READ(ICARD,8OO0,END=7000) SMALLD, CLAMBD, GAMMAC

C COMPUTE THE CORRESPONDING SIGNAL PARAMETERS.C

EPSLON=EMM*CLAMBD/(2 .*BETA)
IF (GAMMA .NE. 0.) FREQ = 6.2831853*BETA*EPSLON / (CZERO*

I ADELTA*GAMMA)
IF (FSUBF .LT. 0.) FSUBF = FREQ
RSUBC = CZERO/(6.283185*FREQ*BETA*EPSLON)
GO TO 1600

C
C INPUT EPSLON AND FREQ.
C
1500 READ(ICARD,8020,END=7000) EPSLON, FREQ
C
C COMPUTE CORRESPONDING SCALED PARAMETERS.
C

IF (FSUBF .LT. 0.) FSUBF = FREQ
CLAMBD =2.*BETA*EPSLON/EMM
GAMMA= CLAMBD*EMM*3.141593/ (CZERO*ADELTA*FSUBF)
SMALLD = CLAMBD/(6.2831853*TSUBR*FSUBF)
RSUBC=CZERO/(6.2831853*FREQ*BETA*EPSLON)

C
C SET UP FOR ITERATION
C ISC - INDEX AT WHICH SIGMA CHANGES; AT THIS STEP NUMBER THE
C RANGE STEP SIZE IS MULTIPLIFD BY SIGST2 (OR BY 10 IF
C SIGST2 IS LESS THAN 0).
C ISF - FILE TO WHICH SPECTRA ARE TO BE WRITTEN; LESS THAN ZERO
C TO SUPPRESS SPECTRAL OUTPUT.
C IPR - NUMER OF RANGE STEPS PER PRINTOUT CYCLE.
C IDUM - IF NOT ZERO, THE ASSUMED NUMBER OF EQUAL AMPLITUDE
C INPUT COMPONENTS, USED FOR NORMALIZATION OF THE SPECTRAL
C AMPLITUDE OUTPUT. IF ZERO, NO NORMALIZATION IS PERFORMED.
C SIGSTP - INITIAL NUMBER OF RANGE STEPS PER UNIT SIGMA.
C SIGST2 - IF GREATER THAN ZERO, MULTIPLE OF RANGE STEP TO BE
C USED AFTER STEP ISC.
C SMAX - MAXIMUM SCALED RANGE OF INTEREST.
C
1600 READ(ICARD,8060) ISC, ISF, IPR, IDUM, SIGSTP, SIGST2, SMAX

AMPNRM=1.
IF (IDUM .GT. 0) AMPNRM=FLOAT(IDUM)/SQRT(FLOAT(IFOUR/4))
CALL SSWTCH(8 AMPLR)
AMPLR=.NOT.AMPLR
ATTF=O.
ATT2=O.
DSPF-O.
TF2=(TSUBR*FSUBF) **2
STEPI=]./SIGSTP
IF (ATTN .AND. GAMMA .NE. 0.) ATT F=STEPI/GAMMA
IF RELX) GO TO 1700
IF DISP .AND. SMALLD .NE. 0.) DSPF=-STEPI/SMALLD
GO TO 1800

1700 IF (CLAMBD .EQ. 0.) GO TO 1800
DSPF = STEPI*TF2/CLAMBD
IF (ATTN) ATT2 = TSUBR*FSUBF*GAMMA/CLAMBD

1800 READ(ICARD,8040) LI, ILIST
NTRK=-]
IF (LI .LT. 1) CO TO 2000
IF (LI .GT. ti) LI=L1



137

NTRK= LI
DO 1900 I=1 LI

1900 CONTINUE
C
C GET INITIAL WAVEFORM.
C
2000 LPPAGE=LPPAGE+1

WRITE(6,9090) ICASE, IDAT, LPPAGE
WRITE( b 9010) ICARD
CALL LNIT(IFOUR UZERtO,FSUBF,FREQ,FMUL,GAMM,CLAMBD,EPSLON,SMALLD,

I ICARD)
IF (UZEROCI) .E. 1.) GO To 2100
WRITE(6 9180)
GO TO 66~00

C
C SET UP ITERATION VARIABLES
C
2100 SIGMA = 0.

KO UNT=O
DSIGI ./SIGSTP
DS=FLOAT(IFOUR) *DSIG/6.283 1853
IFH = IFOUR/2
IF2 = IFH+1
IF21 = IFOUR+2
KPR=0

C
C GET THE COMPLEX FACTORS ACCOUNTING FOR ATTENUATION, DISPERSION,
C AND RELAXATION.
C

GALL CMPFAC(CALFA,IFOUR,ATTF,ATT2,DSPF,TF2,RELX,IMAXF,ICARD)
C
C DISPLAY RUN PARAMETERS
C

WRITE(910 DISP, ATTN, RELX, AMPLR
WRITE6:911O) GAMMA, CLAMBD, SMAILLD

WRIE 6910) EPSLON, FREQ, FSUBF
WRITE 6,9130) DSPF ATTF, ATT2
WRITE(6,9140) IFOU, DS, SIGSTP
WRITE(6,915G BETA, EMM CZERO
WRITE(6 ,9160I ADELTA, THUBR
IF (ISC .GT. )WIE(,10 SIGST2, ISC
IF (1SF .GE. 0) WRITE(6:9040) 1SF
IF (IPR .GT. 1) WRITE (6,9050) IPR
LPPAGE=LPPAGE+1
WRITE(6 9090) ICASE, IDAT, LPPAGE
KLINPR=l
WRITE(6,9080)
IF (NThk .GT. 0) WRITE(6,920U) (ILIST(KK),KK=1,NTRK)

C
C COMPUTATION OF U(SIGMA) GIVEN U(ZERO)
C
2300 IF (KOUNT .NE. ISC) GO TO 2400

WRITE(6,9210) KOUNT, SIGST2
DS =DS *SIGS'12
ATTF=ATTF*S IGST2
DS IG=DSIG*SIGST2
DSPF=DSPF*SIGST2
CALL CMPFAC(CALFA,IFOUR,ATTF,ATT2,DSPF,TF2,RELX,IMIAXF,ICARD)

2400 KOUNT=KOUNT+1
SIGMA = SIGMA + DSIG
KPR=KPR+1
IF (AMPLR) CO TO 2600

C
C GET RMS AMPLITUDE BEFORE NON LINEAR OPERATOR
C

RMSBEF = 0.
DO 2500 1=] IFOUR
RMSBEF =RNl BEF + UZERO(I)**2

2500 CONTINUE
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RMSBEF=SQRT(RM SBEF/FLOAT( IFOUR))

C FINITE DIFFERENCE INTERPOLATOR

2600 DX=O.
DO 2800 I=1,IFOUR
DX=DX+I.
DL=UZERO(I)*DS
XT=DX+DL
M=XT
XT=XT-FLOAT(M)
MO=-M
IF(MO .LT. 1) MO-MO+IFOUR
IF (MO GCT. IFOUR) MO=MO-IFOLJR
MI=M+1
IF(XT .LT. 0.) M1=M-1
IF (MI L.1MIM+FU
IF (M GT. IFOUR) M1=Ml-IFOUR
IF (X LT. 0.) XT=-XT
USIGMA(I) = UZERO(MO)*(1.-XT) + UZERO(MI)*XT

2800 CONTINUE
C
C END OF THE F.D.I. LOOP.
C

IF (AMPLR) GO TO 3100
C
C GET RMS AMPLITUDE AFTER NON LINEAR OPERATOR

RMSAFT = 0.
DO 2900 I=1,IFOUR
RMSAFT=RMSAFT + USIGMA(I)**2

2900 CONTINUE
RMSAFT = SQRT(RMSAFT/FLOAT(IFOUR))

C
C FIX UP THE DIFFERENCE
C

FACTOR = RMSBEF/RMSAFT
DO 3000 I=1,IFOUR
USIGMA(I) = USIGMACI) * FACTOR

3000 CONTINUE
C
C DISPERSION AND/OR ATTENUATION, IF EITHER, ARE APPLIED IN THE
C FREQUENCY DOMAIN.
C IF EITHER ATTENUATION OR DISPERSION IS ENABLED, THEN THE
C SPECTRUM MODIFICATION MUST BE PERFORMED- IF NIETHER IS ENABLED,
C TRANSFORM INTO THE SPECTRAL DOMAIN ONLY IF LECTRAL INFORMATION
C IS TO BE OUTPUT.
C
3100 IF (ATTN .OR. DISP) GO TO 3200

IF (NTRK .LT. 1) GO TO 5200
IF (KPR .NE. IPR) GO TO 5200

C
C UNPACK THE REAL DATA INTO THE REAL PARTS OF A COMPLEX ARRAY.
C
3200 Do 3300 I=1 IFOUJR

Z(I) =CMPLk(USIGMA(I),O.)
3300 CONTINUE

CALL OFT ( Z, W, ISQ, IFOUR, 2)
C
C BYPASS THIS SECTION IF ONLY THLE SPECTRAL RECORD IS DESIRED-- NO
C ATTENUATION OR DISPERSION.
C

IF (.NOT. (ATTN .OR. DISP) )GO To 4000
K=IFOUR
IF (DISP) GO To 3500

C
C APPLY ATTENUATION ONLY.
C

N-1
Do 3400 I-2,IMAXF
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N=N+2
RN = RALFA(N

Z(K) = CONJG Z(B)
K=K-1

3400 CONTINUE
GO TO 370U

C
C APPLY DISPERSION AND POSSIBLY ATTENUATION.
C
3500 DO 3600 1=2 IMAXF

ffl) = Z(I)IGALFA(I)
Z )=CONJG(Z(I))

K=K-1
3600 CONTINUE
C
C DELETE H-F PART OF SPECTRUM
C
3700 CF=CMPLX(0. ,0.)

N=IMAXF+I
M=-IFOUJR+2-N
DO 3800 1=N,M
z(I)=CF

3800 CONTINUE
C
C OUTPUT SPECTRUM IF DESIRED
C

4000 IF (ISF .LT. 0) CO To 4100
MMU= -1
WRITE (ISF) KOUNT, SIGMA, IFOUR, ICASE, (IDAT(KKK),KKK=l,2), MM. U
WRITE(ISF) (Z(KK),KK=1,IF2)

C
C PRINT TRACKED SPECTRUM IF DESIRED
C
4100 IF (NTRK .LT. 0) GO TO 4300

DO 4200 I=1,NTRK
ATRK(I) = CASS(Z(ITRK(I)))*AMPNRM

4200 CONTINUE
C
C INVERSE FOURIER TRANSFORM AND RESTORE REAL FUNCTION TO THE
C UZERO ARRAY.
C
4300 CALL DFT ( Z, W, ISQ, IFOUR, -2)

J=I FOUR
DO 4400 I=I,IFOUR
CF=Z( JF=CABS(CF)
IF (REAL(CF) .LT. 0.) F=-F
UZERO(J) -F
J=J-1

4400 CONTINUE
C
C SEE IF A PRINTED DATA RECORD IS DESIRED -- IF SO, OUTPUT IT AFTER
C CHECKING WHETHER THE PAGE IS FULL.
C
4500 IF (KPR .LT. IPR) GO To 4800

KPR=O
KLI NP R=KL INPR+I
IF (KLINPR .LE. 50) GO To 4600
KLINPR=1
LPPAGE=LPPAGE+i.
WRITE (6,9090) ICASE, IDAT, LPPAGE
WRITE( 6 9080)
IF (NTR& GCT. 0) WRITE(b,9200) (ILIST(KK),KK=1,NTRK)
WRITE(6,9170)

C
C COMPUTE RMS, FIND MAX AND MIN, AND ANYTHING ELSE TO BE PRINTED.
C
4600 URMS=UZERO( 1)**2
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UMIN=UZERO( 1)
UMAX=UMIN
DO 4700 I=2,IFOUR
UI=UZERO( I)
URMS=URMS + UI**2
IF (UI .GT. UMAX) UMAX=UI
IF (UI :LT. UMIN) UMIN=UI

4700 CONTINUE
URMS=SQRT(URMS/FLOAT (IFOUR))
IF (NTRK .LT. 1) WRITE (6,90U0) KOUNT, SIGMA, URMS, UMAX, UMIN
IF (NTRK .GT. 0) WRITE(6,9000) KOUNT, SIGMA, URMS, UMAX, UMIN,

1 (ATRK(KK), KKfi , NTRK)
C
C SEE IF DESIRED RANGE IS ATTAINED.
C
4800 IF (SIGMA .GE. SMAX) GO TO 5000

GO TO 2300
C
C END-OF-SEQUENCE HANDLER
C
5000 WRITE(6 9340) KOUNT, SIGMA

KOUNT=- 1
IF (ISF .GE. 0) WRITE (ISF) KOUNT, SIGMA, IFOUR, ICASE, (IDAT(KKK)

1 KKK= 2) MMU
6o TO I566

C PUT NEW WAVEFORM BACK IN OLD ARRAY
C
5200 DO 5300 1=1IFOUR

UZERO(I) = SIlGMA(I)
5300 CONTINUE

GO TO 4500
C
C END-OF-STEP HANDLER
C6000 KOUNT-1

IF (ISF .GE. 0) WRITE (ISF) KOUNT, SIGMA, IFOUR, ICASE, (IDAT(KKK)
I KKK=I,2), MMU
TOP

C
C ERROR HANDLER
C
7000 KOUNT=-l

IF (ISF .GE. 0) WRITE (ISF) KOUNT, SIGMA, IFOUR, ICASE, (IDAT(KKK)
I KKK=1,2), MMU
TOP

C
C FORMAT STATEMENTS
C
8000 FORMATI 8F10.)
8020 FORMAT 215,7F10 1)
8040 FORMAT 16I5)
8060 FORMAT 415,6F10.1)
9000 FORMAT ",f 15 F8.3 FIO.4 2FIO.3 11F8.4)
9010 FORMAT ,OCRDIMAGE CONTROL INPUT FROM DEVICE',I3)
9040 FORMAT ORECORD SPECTRA ON',13)
9050 FORMAT 'ODISPLAY PRINTED RECORD EVERY',13 RANGE STEPS.')
9080 FORMAT '0 STEP SIGMA U(RMS) (MAX) (MIN)')
9090 FORMAT I B E L L M A N S M E T H 0 D - RELEASE FIVE, 7 AUGU

IST 1980,- CASE',I IO ,4X,2A4, 5X, 'PAGE',14)
9100 FORMAT('0 DISPERSION 'LI ; ATTENUATION ",LI,'; RELAXATION ',LI,

I '- INVISCID OPERATOR LI)
9110 FOkMAT('OGAMMA ",1PE1.3," CLAMBDA ',E13.3,' SMALL D ",

IE13.3)
9120 FORMAT('OEPSLON ',IPEI3.3,' FREQ ',E13.3,' F SUB F ,

IE13.3)
9130 FORMAT(UODSPF ',IPE13.3,' ATTF ',E13.3,' ATT2

IE13.3)
9140 FORMAT"OIFOUR ',113,' DS ',IPEI3.3,' SIGSTP ',E13.31)
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9150 FORMAT('OBETA ',IPEI3.3,' EMM ',E13.3,' CZERO -,
IE13.3)

9160 FORMAT('ODELTA ',IPEI3.3,' T SUB R ',E13.3)
9170 FORMAT(' 1)
9180 FORMAT( 0** BEWARE *** UNSPECIFIED INITIAL WAVEFORM.")
9190 FORMAT( ONOTE: DELTA SIGMA WILL BE MULTIPLIED BY',IPEII.3,

1 ' AFTER',16 ' STEPS.')
9200 FORMAT( '+40X 1I18)9210 FORMAT( 0AIPTER STEP ,14,' MULTIPLY DELTA SIGMA BY',F8.1)

9340 FORMAT( 'OEND OF TASK AT STEP',15,' SIGMA',IPE12.3)
END

SUBROUTINE CMPFAC ( CALFA, IFOUR, ATTF, ATT2, DSPF, TF2, RELX,
I IMAXF, ICARD)

C
C ATTENUATION, RELAXATION, AND DISPERSION FACTORS. SEE 19 X '77 AND
C 24 VI '80 NOTES FOR DETAILS.
C
C REVISION 8 VII 1980 -- PROGRAM MODIFIED TO LIST STYLE OF
C ATTENUATION, RELAXATION, AND DISPERSION ON PRINTED LISTING.
C
C REVISION 30 JULY 1980 -- INPUT TAKEN FROM CARD-IMAGE FILE 'IFILE'.
C

COMPLEX CALFA(IFOUR), CF
LOGICAL RELX

C
WRITE(6 9000)
CALFA(1)=1.
ENN=O.
CF=CMPLX(O 0.)
NI=IFOUR/2 + 1
DO 1000 I=2,NI
ENN=ENN+I.
EN2=ENN**2
DEN=I .+EN2*TF2
EF=EXP (-EN2*ATTF* (1 .+ATT2/DEN))
IF (EF .LT. I.E-10) GO TO 800
PF=ENN**3*DSPF
IF (RELX) PF=PF/DEN
CALFA(I)=CMPLX(EF*COS(PF) ,EF*SIN(PF))
GO TO 1000

800 CALFA(I)=CF
1000 CONTINUE
8888 RETURN
9000 FORMAT('0COMPLEX ATTENUATION DISPERSION, AND ATTENUATION; SEE NOT

IES OF 24 JUNE 1980 FOR DETAILS.')
END

SUBROUTINE UNIT ( IFOUR, UZERO, FSUBF, FREQ, FMUL, GAMMA,
1 CLAMBD, EPSLON, SMALLD , ICARD )

C
C WAVEFORM INITIALIZATION SUBROUTINE.
C DESIGNED/CODED 24 VI 1980.
C
C SOLI DEO GLORIA 24 VI 1980 -- F S MCKENDREE.
C
C REVISION 30 JULY 1980 - INPUT TAKEN FROM CARD-IMAGE FILE 'IFILE'.
C
C REVISION 5 AUGUST 1980 - ABILITY TO DISABLE INITIAL FUNCTION
C NORMALIZATION ADDED; USE SWITCH 7 ON TO DISABLE.
C

REAL UZERO( IFOUR)
LOGICAL S07

C
C SET UP AND ZERO DATA ARRAY.
C

DO 500 I=I,IFOUR
UZERO( I )=U.

500 CONTINUE



142

DP=6.2831853*FMUL/FLOAT(IFOUR)
WRITE(6,9000) IFOUR, FSUBF, FMUL

C

C READ FREQUENCY, AMPLITUDE, AND PHASE OF EACH COMPONENT, AND
C ACCUMULATE IN UZERO ARRAY.
C
1000 READ(ICARD 8000 END=2000) Fl, Al, P1, F2, A2, P2

WRITE(6,9020) Fl, Al, P1, F2, A2, P2
RI--PI*0.0174329
R2=P2*0.01745329
P=-DP
DO 1500 1I-IFOUR
P=P+DP
UZERO(I)=UZERO(I)+AI*COS(FI*P+RI)+A2*COS(F2*P+R2)

1500 CONTINUE
IF (Fl .GT. 0. .AND. F2 .GT. 0.) GO TO 1000

C
C NORMALIZE TO UNITY PEAK AMPLITUDE.
C
2000 CALL SSWTCH(7,S07)

IF (S07) WRITE(6 9040)
IF (S07) GO TO 8A88
AMAX=ABS(UZERO( 1))
DO 2500 1=2 IFOUR
AM=ABS(UZER6(I))
IF (AM .GT. AMAX) AMAX=AM

2500 CONTINUE
AM--1 ./AMAX
DO 3000 I=IIFOUR
UZERO(I)-UZERO(I)*AM

3000 CONTINUE
8888 RETURN
8000 FORMAT 8FI0. R) F 5
9000 FORMAT OUNIT SUBROUTINE: IFOUR,15 FSUBF FMUL' IP2EI2.3)
9020 FORMAT 'OFI Al P1: IP3EI2.3, ; F2 A2 P2:',3EI2.3)
9040 FORMAT('OINITIAL FUNCIION WILL NOT BA NORMALIZED TO UNITY PEAK AMP

ILITUDE.')
END

SUBROUTINE DFT ( Z, W, ISQ, N, NC )
C
C DISCRETE FOURIER TRANSFORM SUBROUTINE WITH PASSED ARGUMENTS
C
C THIS SUBROUTINE IS OPTIMIZED FOR RAPID SEQUENTIAL PERFORMANCE
C OF SUCCESSIVE DIRECT AND INVERSE TRANSFORMS OF THE SAME SIZE.
C
C DEFINITIONS OF ARGUMENTS:
C Z - ON CALL INPUT COMPLEX SEQUENCE; ON RETURN, OUTPUT
C C6MPLEX SEQUENCE.
C W - COMPLEX WORKING ARRAY; THESE VALUES MUST NOT BE CHANGED
C BETWEEN CALLS TO THE SAME SIZE DFT.
C ISQ - INTEGER ARRAY USED TO STORE THE SEQUENCE NUMBERS
C WHICH ARE EXCHANGED IN THE BIT REVERSAL.
C N - NUMBER OF POINTS IN THE FOURIER TRANSFORM; MINIMUM
C LENGTH OF THE Z, W AND ISQ ARRAYS.
C NC - CONTROL INTEGER VARIABLE; LESS THAN ZERO FOR INVERSE
C TRANSFORM, OTHERWISE DIRECT IS ASSUMED.
C
C THE MINIMUM ALLOWABLE N IS 8 AND THE MAXIMUM IS 4096; THE VALUE
C OF N MUST BE AN INTEGER POWER OF 2.
C

COMPLEX C, D Z(N), W(N)
REAL*8 CO. SI CD SD SS ARG, SO
INTEGER JU(123, Jb(125, IQ(N), OLDN/-9999/

C
C DETERMINE IF THE VALUE OF N CALLED FOR IS CURRENT.
C IF SO, CHOOSE DIRECT TRANSFORM (IOFS=U) OR INVERSE TRANSFORM.
C

IF (OLDN .NE. N) GO TO 7000
1000 IOFS=U

IF (NC .LT. 0) IOFS-N2
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C
C FIRST DFT LOOP; MULTIPLY BY AMPLITUDE FACTOR AND TAKE THE
C SUM AND DIFFERENCE. SINCE THE COMPLEX EXPONENTIAL SAMPLE
C FOR THIS LOOP IS 1, COMPLEX MULTIPLICATION IS NOT REQUIRED.
C
3000 DO 3100 I=I,N2

II=I+N2

D=Z(II)
C-C*AMPL
D-D*AMPL
Z()=C+D
Z(II)=C-D

3100 CONTINUE
C
C BIT-REVERSED RESEQUENCING OF THE Z ARRAY. USE THE VALUES
C STORED IN ISQ TO ONTROL THE SEQUENCING.
C

IN2-N2+1
DO 4500 I=2,N2
IN2=IN2+1
IF fIsq(1)I .LT. 0) GO TO 4500
Z( I SQ ())=z( ISQ(IN2))
Z( ISQ ( IN2) )=C4500 CONTINUE

C
C REMAINING ITERATIONS OF THE DFT.
C

DO 5100 I=2,L2N
K=JU(I)
KK=JD(1)
KI=K+K
M=-KI
DO 5100 II=I,KK
M-M+KI
J=-KK
DO 5100 III=I,K
J=J+KK
L=I II+M
LL--L+K
C-Z (L)D=Z (LL)
IF (J.EQ.1) GO TO 5000
D=D*W(J+IOFS)

5000 f(L)=C+DZ(LL)=C-D

5100 CONTINUE
C
C RETURN AFTER TRANSFORM IS COMPLETED.
C
9999 RETURN

C

C EVALUATE THE COMPLEX EXPONENTIAL SAMPLES IN THE W ARRAY, THE
C POWERS OF 2 IN ASCENDING AND DESCENDING ORDERS RESPECTIVELY
C IN JU AND JD, AND THE BIT-REVERSE PAIRS FOR SWAPPING IN ISQ.
C
7000 OLDN=N

SS=DFLOAT(N)
ARG-6.28318530718D0
SS-ARG/SS
SD=DSIN(SS)
CD=DCOS(SS)
CO=CD
Sl=SD
NBN/8
N4-Nb+Nb
N2=N4+N4
N4P2-N4+2
N2P2-N2+2

I
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W(l)=CMPLX( . ,0.)
3=1
OLDO=O

720W(N4-I1)=CMPLX(O.,-1.)
CoP=SNGL (CO)
SIP=SNGL (SI)
W( J)=CMPLX(COP SIP)C)W( J+N4)-CMPLX(gIP-CP
IF (J GT N8) GO T6 7300
w ( 2P2-J) CMPLX ( COP SIP)
W( N4P2-J )=CMPLX(-SIP ,-COP)
SO=SI
SI=S I*CD+CO*SD
CO=C0*CD-SO*SD
GO To 7200
THCEANE FTEWARY

C DETERMINE THlE TRANSFORM NORMALIZATION FACTOR AHPL AND FILL IN

C
7300 AMPL=1./SQRTCFLOAT(N))

K=N2
Do 7400 I-1,N2[
K=K+1
W(K)=CONJG(W(I))

7400 CONTINUE
C
C DETERMINE THE LOG TO THE BASE 2 OF N, L2N, AND FILL IN THE JU
C AND 3D ARRAYS.
C

KK= 1
A=ALOGIO(CFLOAT(N))*3.321928 + 0.5
L2N-IFIX(A)
LL=L2N
DO 7500 L=1,L2N
JU (L)=KK
JD (LL)=KK
LL=LL- I
KK=KK+KK

7500 CONTINUE
C
C FILL IN THE ISQ ARRAY WITH THE BIT-REVERSE PAIRS.

DO 8100 I=1,N
ISQ(I)=-1

8100 CONTINUE
mm 1
DO 8500 I12,N
K=I-1
KKO0
DO 8200 L=1,L2N
JJ=K-JD(L)
IF (JJ .LT. 0) GO TO 8200
KK-KK+JU(L)
K=JJ
IF (K .LE. 0) GO TO 8300

8200 CONTINUE
8300 KK-KK+1

JJ=IUC-I
IF (3 .LE. 0) GO TO 8500
MM=MM+1
ISQ(M)=I
ISQ( MMIN2 )=KK

8500 CONTINUE
GO TO 1000
END

SUBROUTINE SSWTCH(N,V)
LOGICAL V,S(13)/.FALSE.,.FALSE.,.FALSE.,.FALSE.,.FALSE.,

I .FALSE. .FALSE., .FALSE. .FALSE.
2 .FALSE.,.TRUE. ,.FALSE.:.FALSE.
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L-N+l
V=.FAL SE.

IF(LGT. 13) .OR. (L .LT. 1)) GO TO 8888
8888 ETUR

END
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